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ACRONYMS AND ABBREVIATIONS 

AMMA   African Monsoon Multidisciplinary Analyses 

ANN   Artificial Neural Network 

ARCC    African and Latin American Resilience to Climate Change 

BCSD  Bias-Corrected Spatial Disaggregation  

CCA  Canonical Correlation Analysis  

CCAFS  CGIAR Program on Climate Change, Agriculture and Food Security  

CF  Change Factor 

CGIAR  Consultative Group on International Agricultural Research  

CIAT  International Center for Tropical Agriculture  

CLARIS  Climate Change Assessment and Impact Studies 

CMIP3   Coupled Model Intercomparison Project Phase 3 

CORDEX Coordinated Regional Climate Downscaling Experiment 

CRCM  Canadian Regional Climate Model  

ECHAM European Centre – Hamburg 

ENSEMBLES  ENSEMBLE-Based Predictions of Climate Change and their Impacts 

ENSO  El Niño-Southern Oscillation 

GCM  General Circulation Model 

HadRM3 U.K. Met Office Hadley Centre’s Regional Climate Model Version 3 

HIRHAM  German model which combines the dynamics of the HIRLAM and ECHAM models 

HIRLAM High Resolution Limited Area Model  

IPCC  Intergovernmental Panel on Climate Change  

LARS-WG  Long Ashton Research Station Weather Generator 

LGP  Length of Growing Period 

NARCCAP  North American Regional Climate Change Assessment Program 

NHMM  Nonhomogeneous Hidden Markov Model 

NOAA National Oceanic and Atmospheric Administration 

PRUDENCE   Prediction of Regional Scenarios and Uncertainties for Defining European Climate 

Change Risks and Effects 
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RACMO Dutch Regional Atmospheric Climate Model 

RCM  Regional Climate Model 

RegCM3 U.S. Regional Climate Model Version 3 

REMO  German Regional Climate Model 

STARDEX  Statistical and Regional Dynamical Downscaling of Extremes for European Regions 

SOM   Self-Organizing Map 

SVD  Singular Value Decomposition 

UNFCCC United Nations Framework Convention on Climate Change   

USAID  U.S. Agency for International Development 

WAM  West African Monsoon  
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GLOSSARY 

Algorithm: Computational step-by-step, problem-solving procedure. 

Bias correction: Adjustment of modeled values to reflect the observed distribution and statistics. 

Change factor (CF): Ratio between values of current climate and future GCM simulations. 

Climatology: Long-term average of a given variable, often over time periods of 20 to 30 years. For 

example, a monthly climatology consists of a mean value for each month computed over 30 years, and a 

daily climatology consists of a mean value for each day.  

Coastal breeze: Wind in coastal areas driven by differences in the rate of cooling/warming of land and 

water.  

Convective precipitation: Intense precipitation of short duration that characterizes most of the 

rainfall in the tropics. 

Direct and indirect effect of aerosols: Atmospheric aerosols are solid and liquid particles 

suspended in air that influence the amount of solar radiation that reaches the surface of the Earth. 

Aerosols can cool the surface of the Earth via reflection of solar radiation. This is termed the direct 

effect. The effect of aerosols on the radiative properties of Earth’s cloud cover is referred to as the 

indirect effect.  

Downscaling: Derivation of local to regional-scale (10-100 kilometers) information from larger scale 

modeled or observed data. There are two main approaches: dynamical downscaling and statistical 

downscaling.  

Emissions Scenario: Estimates of future greenhouse gas emissions released into the atmosphere. Such 

estimates are based on possible projections of economic and population growth and technological 

development, as well as physical processes within the climate system. 

Feedback (climate): An interaction within the climate system in which the result of an initial process 

triggers changes in a second process that in turn influences the initial one. A positive feedback intensifies 

the original process and a negative one reduces it. 

Frequency distribution: An arrangement of statistical data that shows the frequency of the 

occurrence of different values. 

General Circulation Model (GCM): A global, three-dimensional computer model of the climate 

system that can be used to simulate human-induced climate change. GCMs represent the effects of such 

factors as reflective and absorptive properties of atmospheric water vapor, greenhouse gas 

concentrations, clouds, annual and daily solar heating, ocean temperatures, and ice boundaries.  

Grid cell: A rectangular area that represents a portion of the Earth’s surface. 

Interannual variability: Year-to year change in the mean state of the climate that is caused by a 

variety of factors and interactions within the climate system. One important example of interannual 

variability is the quasi-periodic change of atmospheric and oceanic circulation patterns in the Tropical 

Pacific region, collectively known as El Niño-Southern Oscillation (ENSO). 
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Interpolation: The process of estimating unknown data values that lie between known values. Various 

interpolation techniques exist. One of the simplest is linear interpolation, which assumes a constant rate 

of change between two points. Unknown values anywhere between these two points can then be 

assigned. 

Land-sea contrast: Difference in pressure and other atmospheric characteristics that arises between 

the land and ocean, caused by the difference in the rate of cooling/warming of their respective surfaces.  

Large-scale climate information: Atmospheric characteristics (e.g., temperature, precipitation, 

relative humidity) spanning several hundred to several thousand kilometers. 

Lateral boundaries: Information about the air masses, obtained from GCM output or observations, 

used by RCMs to derive fine-scale information. 

Markovian process: When values of the future depend solely on the present state of the system and 

not the past. 

Predictand: The variable that is to be predicted. In downscaling, the predictand is the local climate 

variable of interest.  

Predictor: A variable that can be used to predict the value of another variable. In downscaling, the 

predictor is the large-scale climate variable. 

Regional Climate Model (RCM): High-resolution (typically 50 kilometers) computer model that 

represents local features. It is constructed for limited areas, run for periods of ~20 years, and driven by 

large-scale data. 

Spatial downscaling: Refers to the methods used to derive climate information at finer spatial 

resolution from coarser spatial resolution GCM output. The fundamental basis of spatial downscaling is 

the assumption that significant relationships exist between local and large-scale climate.  

Spatial resolution: In climate, spatial resolution refers to the size of a grid cell in which 10-80 

kilometers and 200-500 kilometers are considered to be “fine” and “coarse,” respectively. 

Stationarity: Primary assumption of statistical downscaling; as the climate changes, the statistical 

relationships do not. It assumes that the statistical distribution associated with each climate variable will 

not change, that the same large-scale predictors will be identified as important, and that the same 

statistical relationships between predictors and predictands exist. 

Stochastic: Describes a process or simulation in which there is some indeterminacy. Even if the 

starting point is known, there are several directions in which the process can evolve, each with a distinct 

probability. 

Synoptic: Refers to large-scale atmospheric characteristics spanning several hundred to several 

thousand kilometers. 

Systematic bias: The difference between the observed data and modeled results that occurs due 

model imperfections. 

Temporal downscaling: Refers to the derivation of fine scale temporal data from coarser-scale 

temporal information (e.g., daily data from monthly or seasonal information). Its main application is in 

impact studies when impact models require daily or even more frequent information. 

Temporal resolution: The time scale at which a measurement is taken or a value is represented. 

Daily and monthly resolutions denote one value per day and one value per month, respectively.  
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Time-series: A set of observations, results, or other data obtained over a period of time at regular 

intervals. A time-series usually displays values as function of time, i.e., time is on the horizontal axis. 

Uncertainty: An expression of the degree to which a value (e.g., the future state of the climate system) 

is unknown. Uncertainty can result from lack of information or from disagreement about what is known 

or even knowable. Uncertainty can be represented by quantitative measures (a range of values 

calculated by various models), or by qualitative statements, reflecting the judgment of a team of experts. 
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EXECUTIVE SUMMARY 

To respond to the needs of decision makers to plan for climate change, a variety of reports, tools, and 

datasets provide projected climate impacts at spatial and temporal scales much finer than those at which 

the projections are made. It is important to recognize the variety of assumptions behind the techniques 

used to derive such information and the limitations they impose on the results. The main tools used to 

project climate are General Circulation Model (GCMs), which are computer models that mathematically 

represent various physical processes of the global climate system. These processes are generally well 

known but often cannot be fully represented in the models due to limitations on computing resources 

and input data. Thus, GCM results should only be considered at global or continental scales for climatic 

conditions averaged at monthly, seasonal, annual, and longer time scales.  

Any information that is presented at spatial scales 

finer than 100 kilometers x 100 kilometers and 

temporal scales finer than monthly values has 

undergone a process called downscaling. While it 

produces climatic information at scales finer than 

the initial projections, this process involves 

additional information, data, and assumptions, 

leading to further uncertainties and limitations of the 

results, a consequence that is often not made 

explicit to end-users. International organizations or 

national governments currently provide no official 

guidance that assists researchers, practitioners, and 

decision makers in determining climate projection 

parameters, downscaling methods, and data sources 

that best meet their needs. Since the research 

community is still developing downscaling methods, 

users often need to read highly technical and 

specialized explanations in order to understand and 

adequately apply the results for impact studies, 

planning, or decision-making. 

The following are important considerations and 

recommendations to keep in mind when designing 

and interpreting fine-scale information on climate 

change and its impacts. 

 Downscaling relies on the assumption that local 

climate is a combination of large-scale 

climatic/atmospheric features (global, 

hemispheric, continental, regional) and local conditions (topography, water bodies, land surface 

properties). Representation of the latter is generally beyond the capacity of current GCMs. 

 Deriving climate projections at local scales is a multistep process, as illustrated in Figure 1. At each 

step, assumptions and approximations are made. Uncertainties are inherent in projections of 

changes in climate and their impacts. They arise from different sources and need to be kept in mind, 

whether explicitly quantified or not. 

Source: Daniels et al., 2012 

 

FIGURE I. ILLUSTRATION OF THE 

COMPONENTS INVOLVED IN 

DEVELOPING GLOBAL AND 

REGIONAL CLIMATE PROJECTIONS 
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 Downscaling can be applied spatially and temporally. Oftentimes, several downscaling methods are 

combined to obtain climate change information at desired spatial and temporal scales. 

 There are two principal ways to combine the information on local conditions with large-scale 

climate projections: 

 Dynamical: by explicitly including additional data and physical processes in models similar to 

GCMs but at a much higher resolution and covering only select portions of the globe1. This 

method has numerous advantages but is computationally intensive and requires large volumes of 

data as well as a high level of expertise to implement and interpret results, often beyond the 

capacities of institutions in developing countries. 

 Statistical: by establishing statistical relationships between large-scale climate features that GCMs 

and local climate characteristics provide. In contrast to the dynamical method, the statistical 

methods are easy to implement and interpret. They require minimal computing resources but 

rely heavily on historical climate observations and the assumption that currently observed 

relationships will carry into the future. However, high quality historical records often are not 

available in developing countries. 

In most cases, a sequence of different methods is needed to obtain results at the desired resolution; 

however, the analysis of select reports presenting changes in climate and/or their impacts has shown the 

following points: 

 Information on downscaling and the limitations of the results are often not appropriately highlighted, 

leading the user to believe that the results are “true” and valid at the resolution presented. 

Extensive reading of technical documentation is often needed to uncover all the steps and 

assumptions that led to the final results. 

 Uncertainties inherent in projections and additionally arising from applied downscaling are often not 

presented, quantified, nor discussed, leading the user to interpret the numerical results at face value. 

 Validation of downscaled results (on historical data) is often omitted; comparing downscaled results 

to high-resolution observed information would highlight systematic biases and the limitations of 

results. 

The above deficiencies most frequently result from simple oversight by the authors of the report or 

their efforts to make it easy to use. However, they are important, and an expert user may be able to 

detect them and estimate the limitations of the results.  

The overall diversity of the approaches and methods in existing reports and publications reflects the 

diversity of the goals and resources of each assessment. Thus, there is no single best downscaling 

approach, and downscaling methods will depend on the desired spatial and temporal resolution of 

outputs and the climate characteristics of the highest impact of interest. In light of current approaches 

and practices reviewed in this report, it is possible to make the recommendations that follow. 

                                                

 

1  Since the main constraint on resolution is the available computing resource, increasing the resolution requires reducing the 

area covered; therefore, Regional Climate Models (RCMs) usually cover portions of the globe. 
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RECOMMENDATIONS 

 Given the diversity of developed approaches, it is best to partner with a climate scientist or 

downscaling expert who can help to evaluate the needs, relevant techniques, and limitations of the 

results, as detailed below. 

 When designing assessments of climate change and its impacts at sub-regional scales, a thorough 

evaluation of the information needs and the relevance of existing information should be carried out 

first. If the need for an original downscaling of the projections is confirmed, the approach should be 

selected based on the information needs and also, importantly, on available resources (data, 

computing resources, expertise, and time-frames). The decision tree (Figure 2) has been designed to 

guide the sponsors and the scientists in determining an appropriate downscaling method. The 

questions are important considerations that should be answered carefully. It is important to note 

that this decision tree is not customized to a particular assessment or project, and thus some 

questions that are essential to a particular case may be missing. 

 When using/interpreting existing results/reports, the coarse resolution of the initial projections and 

the scales at which they are valid need to be kept in mind. Any results presenting fine-scale spatial 

details or using high temporal resolution data have undergone a manipulation (usually a sequence of 

manipulations) of the original projections, whether this process is described or not. It is only 

through an evaluation of the employed downscaling procedure that the validity of the results at a 

fine resolution and the value added over initial coarse projections can be assessed. Results that look 

detailed may actually not be robust; in general, a rigorous downscaling process requires including 

additional information, and a simple interpolation from coarse- to fine-scale may not lead to reliable 

results. Therefore, it is important to understand (and research if not directly available) at least the 

broad aspects of the applied downscaling. 

 Since uncertainty is inherent to the projections, an estimate of it — quantitative or at least 

qualitative — should always be included and carried through the downscaling process. Such an 

estimate should at least include different potential future climate states and ideally should also 

estimate the influence of the downscaling procedure on the final results. 
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FIGURE 2. WHICH DOWNSCALING TECHNIQUE IS MOST APPROPRIATE FOR THE PRESENT STUDY? 

Figure 2. 
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1.0 INTRODUCTION  

Decision makers are increasingly demanding climate information at the national to local scale in order to 

address the risk posed by projected climate changes and their anticipated impacts. Readily available 

climate change projections are provided at global and continental spatial scales for the end of the 21st 

century (Intergovernmental Panel on Climate Change [IPCC], 2007). These projections, however, do 

not fit the needs of sub-national adaptation planning that requires regional and/or local projections of 

likely conditions five to 10 years from now. Moreover, decision makers are interested in understanding 

the impacts of climate change on specific sectors, e.g., agricultural production, food security, disease 

prevalence, and population vulnerability. 

In response to this demand, numerous impact and vulnerability assessments produced at different scales, 

from global to local, provide climate change impact results at spatial scales much finer than those at 

which projections are initially made. To produce such results, combinations of methods and indicators 

are often used, each with its own assumptions, advantages, and disadvantages. In reports, these essential 

factors may not be adequately communicated to the reader, thus leaving him/her without the ability to 

understand potential discrepancies between different reports. Often, global or continental-scale 

information is directly used to produce local-scale impact maps, which is not appropriate since this 

large-scale information does not account for differences at the local scale.   

In order to derive climate projections at scales that decision makers desire, a process termed 

downscaling has been developed. Downscaling consists of a variety of methods, each with their own 

merits and limitations. International organizations or national governments currently provide no official 

guidance that assists researchers, practitioners, and decision makers in determining climate projection 

parameters, downscaling methods, and data sources that best meet their needs.  

The goal of the present paper is to provide non-climate specialists with the ability to understand various 

downscaling methods and to interpret climate change downscaling studies and results. The remainder of 

this introductory section describes how global climate change projections are produced and 

downscaled. Section 2.0 provides details about the two primary downscaling approaches: dynamical and 

statistical. Section 3.0 offers an analysis of examples of reports that use downscaling to produce climate 

change impact maps. Short summaries of the main points/key takeaways are presented at the end of 

each of these sections. General conclusions and recommendations are provided in Section 4.0. Annexes 

A, B, and C describe in greater detail statistical downscaling methods, regional climate change 

assessment projects, and downscaling tools and software, respectively.  

1.1 GENERAL CIRCULATION MODELS  

General or global circulation models (GCMs) simulate the Earth’s climate via mathematical equations 

that describe atmospheric, oceanic, and biotic processes, interactions, and feedbacks. They are the 

primary tools that provide reasonably accurate global-, hemispheric-, and continental-scale climate 

information and are used to understand present climate and future climate scenarios under increased 

greenhouse gas concentrations. 
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A GCM is composed of many 

grid cells that represent 

horizontal and vertical areas on 

the Earth’s surface (Figure 3). In 

each of the cells, GCMs compute 

the following: water vapor and 

cloud atmospheric interactions, 

direct and indirect effects of 

aerosols on radiation and 

precipitation, changes in snow 

cover and sea ice, the storage of 

heat in soils and oceans, surfaces 

fluxes of heat and moisture, and 

large-scale transport of heat and 

water by the atmosphere and 

oceans (Wilby et al., 2009).  

The spatial resolution of GCMs is 

generally quite coarse, with a grid 

size of about 100–500 

kilometers.  Each modeled grid 

cell is homogenous, (i.e., within 

the cell there is one value for a 

given variable). Moreover, they 

are usually dependable at 

temporal scales of monthly means 

and longer. In summary, GCMs 

provide quantitative estimates of future climate change that are valid at the global and continental scale 

and over long periods.  

1.2 DOWNSCALING 

Although GCMs are valuable predictive tools, they cannot account for fine-scale heterogeneity of 

climate variability and change due to their coarse resolution. Numerous landscape features such as 

mountains, water bodies, infrastructure, land-cover characteristics, and components of the climate 

system such as convective clouds and coastal breezes, have scales that are much finer than 100–500 

kilometers. Such heterogeneities are important for decision makers who require information on 

potential impacts on crop production, hydrology, species distribution, etc. at scales of 10–50 kilometers. 

Various methods have been developed to bridge the gap between what GCMs can deliver and what 

society/businesses/stakeholders require for decision making. The derivation of fine-scale climate 

information is based on the assumption that the local climate is conditioned by interactions between 

large-scale atmospheric characteristics (circulation, temperature, moisture, etc.) and local features 

(water bodies, mountain ranges, land surface properties, etc.). It is possible to model these interactions 

and establish relationships between present-day local climate and atmospheric conditions through the 

downscaling process. It is important to understand that the downscaling process adds information to the 

coarse GCM output so that information is more realistic at a finer scale, capturing sub-grid scale 

contrasts and inhomogeneities. Figure 4 (next page) presents a visual representation of the concept of 

downscaling. 

FIGURE 3. CONCEPTUAL STRUCTURE OF A GCM 

 

Source: National Oceanic and Atmospheric Administration (NOAA), 2012 
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Downscaling can be performed on spatial and 

temporal aspects of climate projections. Spatial 

downscaling refers to the methods used to 

derive finer-resolution spatial climate 

information from coarser-resolution GCM 

output, e.g., 500 kilometers grid cell GCM 

output to a 20 kilometers resolution, or even a 

specific location. Temporal downscaling refers 

to the derivation of fine-scale temporal 

information from coarser-scale temporal GCM 

output (e.g., daily rainfall sequences from 

monthly or seasonal rainfall amounts). Both 

approaches detailed below can be used to 

downscale monthly GCM output to localized 

daily information.  

Dynamical downscaling relies on the use of 

a regional climate model (RCM), similar to a 

GCM in its principles but with high resolution. 

RCMs take the large-scale atmospheric 

information supplied by GCM output at the 

lateral boundaries and incorporate more 

complex topography, the land-sea contrast, 

surface heterogeneities, and detailed 

descriptions of physical processes in order to 

generate realistic climate information at a 

spatial resolution of approximately 20–50 

kilometers (Figure 5).  

Since the RCM is nested in a GCM, the overall 

quality of dynamically downscaled RCM output 

is tied to the accuracy of the large-scale forcing 

of the GCM and its biases (Seaby et al., 2013). 

Despite recovering important regional-scale 

features that are underestimated in coarse-resolution GCMs, RCM outputs are still subject to 

systematic errors and therefore often require a bias correction as well as further downscaling to a 

higher resolution. 

Statistical downscaling involves the establishment of empirical relationships between historical 

and/or current large-scale atmospheric and local climate variables. Once a relationship has been 

determined and validated, future atmospheric variables that GCMs project are used to predict future 

local climate variables. Statistical downscaling can produce site-specific climate projections, which RCMs 

cannot provide since they are computationally limited to a 20–50 kilometers spatial resolution. 

However, this approach relies on the critical assumption that the relationship between present large-

scale circulation and local climate remains valid under different forcing conditions of possible future 

climates (Zorita and von Storch, 1999). It is unknown whether present-day statistical relationships 

between large- and regional-scale variables will be upheld in the future climate system.   

Many of the processes that control local climate, e.g., 

topography, vegetation, and hydrology, are not included 

in coarse-resolution GCMs. The development of statistical 

relationships between the local and large scales may 

include some of these processes implicitly.  

Source: Viner, 2012 
 

FIGURE 4. THE CONCEPT OF SPATIAL 

DOWNSCALING 
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Oftentimes, dynamical and statistical approaches 

are used in conjunction. Dynamical-statistical 

downscaling involves the use of an RCM to 

downscale GCM output before statistical 

equations are used to further downscale RCM 

output to a finer resolution. Dynamical 

downscaling improves specific aspects of 

regional climate modeling and provides better 

predictors for further statistical downscaling to 

higher-resolution output (Guyennon et al., 

2013). Statistical-dynamical downscaling is a 

somewhat more complex approach but is less 

computationally demanding in comparison to 

dynamical downscaling. This method statistically 

pre-filters GCM outputs into a few 

characteristic states that are further used in 

RCM simulations (Fuentes and Heimann, 2000). 

1.3 UNCERTAINTY 

Confidence in global-scale GCM projections is 

based on well-understood physical processes 

and laws, the ability of GCMs to accurately 

simulate past climate, and the agreement in results across models (Daniels et al., 2012). Multiple model 

comparisons unanimously project warming of globally averaged near-surface temperature over the next 

two decades in response to increased greenhouse gas emissions. However, the magnitude of this 

increase varies from one model to another. Additionally, in certain regions, different models project 

opposite changes in rainfall amount, which highlights the uncertainty of future climate change projections 

even when sophisticated state-of-the art GCM tools are used. 

There are four main sources of uncertainty in climate projections: 

1. Uncertainty in future levels of anthropogenic emissions and natural forcings (e.g., volcanic 

eruptions);  

2. Uncertainty linked to imperfect model representation of climate processes;  

3. Imperfect knowledge of current climate conditions that serve as a starting point for projections; and 

4. Difficulty in representing interannual and decadal variability in long-term projections.  

Efforts are made to quantify these uncertainties. The future evolution of greenhouse gas emissions is 

highly uncertain due to socio-economic, demographic, and technological evolution. Alternative 

greenhouse gas emissions scenarios are used to drive GCMs in order to obtain a range of possible 

future outcomes. Additionally, models require initial conditions2 to begin the forecast, and these are also 

not known with high accuracy. Therefore, projections are performed starting from slightly modified 

initial conditions to obtain a series of simulations, termed an “ensemble.” Finally, models cannot 

perfectly simulate all climate processes; therefore, simulations from multiple models are produced, and a 

                                                

 

2  Current state of the atmosphere. 

Presented at 500 

kilometer typical GCM grid 

cell; 50 kilometer typical 

RCM grid cell; and 1 

meter, which requires 

statistical downscaling. 

Source: Daniels et al., 

2012 

 

FIGURE 5. MEAN ANNUAL TEMPERATURE 

(1961–1990) 
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multi-model ensemble mean (or median)3  is thought to be the most probable future climate trajectory. 

The spread among the individual simulations in a multi-model ensemble are an estimate of uncertainty 

due to sources 2 and 3 in the preceding list.  

It is important to communicate uncertainty in climate change projections and provide the following 

messages:  

 Uncertainty does not mean that future projections are unknown or false. 

 Uncertainty can be quantified.  

 Decisions can be made in the face of uncertainty. For example, decisions are routinely made in the 

context of military operations and financial investments when uncertainty is greater than that of 

climate projections. 

Figure 6 illustrates uncertainty in GCM simulation of historical global temperature change (IPCC, 2007). 

The black line represents observed temperature anomalies, and each yellow line is a simulation 

produced by an individual GCM with the red line being the multi-model ensemble mean. The spread 

between the simulations illustrates uncertainty. Note that although the individual GCM simulations 

provide different results, there is consensus and general agreement between the models.  

Uncertainty is compounded with downscaling due to assumptions that are inherent in models. With 

each modeling stage, uncertainties are naturally added because more assumptions are made. Although 

downscaling can provide decision makers with the ability to visualize relevant, fine-resolution climate 

features, a tradeoff is that uncertainty and error are difficult to quantify. Thus, evaluating tradeoffs in 

error created by the downscaling process versus uncertainties in GCM outputs is important. Often, 

practical information can be derived from GCMs alone (e.g., magnitude of temperature increase), which 

may be sufficient to identify potential impacts and a range of possible management options. 

  

                                                

 

3  Different GCMs simulate certain climate processes accurately and others erroneously. Thus, a variety of GCMs are run, 
and the mean of this ensemble is determined to be the “best estimate” projection. 

FIGURE 6. GLOBAL MEAN 

TEMPERATURE ANOMALIES 

(RELATIVE TO THE 1901–

1950 MEAN)  
 

 

Observations (black), simulations by 

14 different GCMs (yellow) driven by 

natural and anthropogenic emissions, 

and the mean (red). 

Source: IPCC, 2007 
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1.4 KEY TAKEAWAYS 

 

 

 

 

 

 

 

  

The main tools used to project the impacts of future emissions on climate — GCMs — 

provide information at scales that are too coarse for impact assessment and planning for 

most decision makers. Numerous techniques have been developed to provide climate 

change information at scales more relevant to decision makers based on the assumption that 

local climate is a combination of large-scale atmospheric characteristics and local-scale 

features. However, this information is still contaminated with uncertainties inherent in the 
prediction process, and users must account for these uncertainties in the application of the 

information.  
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2.0 DOWNSCALING 

APPROACHES 

2.1 DYNAMICAL DOWNSCALING 

2.1.1 General Theory 

Dynamical downscaling refers to the use of an RCM driven by a GCM to simulate regional climate. An 

RCM is similar to a GCM but has higher resolution and additional regional information, which enables it 

to better represent local landscape and possibly local atmospheric processes. The global model 

simulates the response of the global circulation to changes in atmospheric composition through a large 

number of processes, but some of them need to be approximated due to the coarse resolution of the 

models. On the other hand, at the resolution of 25–50 km for portions of the globe, the RCM is able to 

capture some of those smaller-scale processes more realistically. Atmospheric fields (e.g., surface 

pressure, wind, temperature, and humidity) simulated by a GCM are fed into the vertical and horizontal 

boundaries of the RCM. Locally specific data and physics-based equations are then used to process this 

information and obtain regional climate outputs. The primary advantage of RCMs is their ability to 

model atmospheric processes and land cover changes explicitly. 

2.1.2 Assumptions and Caveats 

Although there has been great advancement during the past decade in the technical ability of RCMs to 

simulate regional climate, significant challenges and concerns still exist. Since smaller grid cells, more 

surface information, and often more processes are included in an RCM, the number of computations 

might be as large, if not larger, than in a GCM that covers the entire globe4. Thus, RCMs are 

computationally demanding and may require as much processing time as a GCM to compute projections 

(Wilby et al., 2009). They also require a substantial amount of input, e.g., surface properties and high-

frequency GCM information. In addition, complex calibration procedures are often needed to make 

realistic simulations.  

Just like GCMs, RCMs have difficulty accurately simulating convective precipitation, which is a major 

concern for tropical regions. Most RCMs also do not accurately simulate extreme precipitation — a 

systematic bias that can worsen as the resolution is increased. Statistical bias corrections often need to 

be performed to better match the model output to the observations (Brown et al., 2008). In some 

cases, fine adjustments to the convective schemes can improve the realism of simulated rainfall, but 

these adjustments require substantial expertise and reduce geographic portability — that is, they create 

                                                

 

4  Once all the input data — including GCM data — are ready, and depending on the complexity of the model and the 
computer used, it can take about 24 hours to simulate one year of atmospheric conditions. It usually takes several months 

to obtain a single simulation of 50 years of climate with a GCM or an RCM. 
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a version of the model that is well adjusted to a particular region but that may perform poorly 

elsewhere.  

The quality of RCM results also depends on the driving GCM information. For example, if the GCM 

misplaces storm tracks, there will be errors in the RCM’s precipitation climatology (Wilby et al., 2009). 

Additionally, different RCMs contain distinct dynamical schemes and physical parameters, which means 

that RCMs driven by the same GCM can produce different results (Figure 7).  

FIGURE 7. PROJECTED CHANGES IN ANNUAL PRECIPITATION  

DURING THE 2001–2050 PERIOD 

 

Finally, the grid-box size of an RCM is typically greater than 10 kilometers, which is still too coarse for 

hydrological and agricultural impact studies that require more local- or station-scale climate information 

(Benestad, 2009). To obtain higher resolution results, statistical methods are used in lieu of RCMs, or 

RCM output is further downscaled via statistical means. 

In all circumstances, a validation of a model’s performance over the historical period relative to 

simulated variables of interest, (e.g., temperature and/or rainfall) should be performed; RCM outputs 

should not be taken at face value. 

2.1.3 Regional Climate Models and Application 

RCMs are developed by research institutions that have sufficient computational capacity and technical 

expertise. Various RCMs differ in their numerical, physical, and technical aspects. The most commonly 

used RCMs in climate change downscaling studies include the U.S. Regional Climate Model Version 3 

(RegCM3); Canadian Regional Climate Model (CRCM); UK Met Office Hadley Centre’s Regional Climate 

Model Version 3 (HadRM3); German Regional Climate Model (REMO); Dutch Regional Atmospheric 

Climate Model (RACMO); and German HIRHAM, which combines the dynamics of the High Resolution 

Limited Area Model (HIRLAM) and European Centre-Hamburg (ECHAM) models.  

Although the above models have been developed primarily over North America and Europe, they can be 

adapted to any region of the globe by incorporating appropriate information on terrain, land-cover, 

hydrology, and so on; hence, several RCM can be used over a given region. However, downscaled 

results can differ depending on which RCM(s) is used. It is important to recognize that a single RCM will 

most likely not provide ‘accurate’ results; therefore, researchers, practitioners, and decision makers 

should utilize the results with caution, keeping in mind dynamical downscaling assumptions and caveats. 

Maps depict four individual RCMs driven by one GCM and one emission scenario. Notice the differences in 

results. Source: Paeth et al., 2011 
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Most intensive downscaling studies and projects utilize various RCMs to produce a multi-model 

ensemble and further validate results against observations.  

A variety of climate change assessment projects have been established to provide high-resolution climate 

change scenarios for specific regions. They are usually multi-country, multi-institutional, large-scale 

projects. They are an important source of regional projections as well as of additional information about 

RCMs, methods, and even characteristics of current regional climate. Table 1 provides a quick summary 

about the projects, and more detailed information about each project can be found in Annex B.  

TABLE 1. PROJECT NAME AND DATE, REGION OF INTEREST, PURPOSE,  

AND DOWNSCALING APPROACH USED FOR VARIOUS REGIONAL  

CLIMATE CHANGE ASSESSMENT PROJECTS 

Project Region Purpose Method 

PRUDENCE 

(Prediction of Regional 

Scenarios and Uncertainties 

for Defining European 

Climate Change Risks and 

Effects)  

(2001–2004) 

Europe  Provide high-resolution climate change 

scenarios for 21st-century Europe. 

Eight RCMs 

ENSEMBLES  

(ENSEMBLE-Based 

Predictions of Climate 

Change and their Impacts)  

(2004–2009) 

Europe  Develop an ensemble prediction system 

to construct integrated scenarios of 

future climate change for quantitative risk 

assessment. 

RCM 

ensemble 

CLARIS  

(Climate Change 

Assessment and Impact 

Studies) 

(2008–present) 

South 

America 
 Predict climate changes and their socio-

economic impacts. 

Five RCMs 

NARCCAP  

(North American Regional 

Climate Change 

Assessment Program)  

(2006–present) 

North 

America 
 Provide climate change scenario 

information for the United States, 

Canada, and Mexico. 

 Explore the separate and combined 

uncertainties in regional climate 

simulations that result from the use of 

different GCMs and RCMs. 

Six RCMs 
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Project Region Purpose Method 

CORDEX 

(Coordinated Regional 

Climate Downscaling 

Experiment)  

(2009–present) 

Africa  Promote international downscaling 

coordination. 

 Facilitate easier analysis by scientists and 

end-user communities at the local level of 

regional climate changes. 

Ten RCMs 

AMMA  

(African Monsoon 

Multidisciplinary Analyses) 

(2009–present) 

West 

Africa 
 Improve understanding and ability to 

predict the West African Monsoon 

(WAM). 

 Relate variability of the WAM to various 

sectors. 

 Integrate multidisciplinary research with 

prediction and decision making. 

Multi-RCM 

comparison 

STARDEX 

(Statistical and Regional 

Dynamical Downscaling of 

Extremes for European 

Regions) 

(2002–2005) 

Europe  Identify robust downscaling methods to 

produce future scenarios of extremes for 

the end of the 21st century. 

Dynamical 

and 

statistical 

2.2 STATISTICAL DOWNSCALING 

2.2.1 General Theory 

Statistical downscaling involves the establishment of empirical relationships between historical large-scale 

atmospheric and local climate characteristics. Once a relationship has been determined and validated, 

future large-scale atmospheric conditions projected by GCMs are used to predict future local climate 

characteristics. In other words, large-scale GCM outputs are used as predictors5 to obtain local variables 

or predictands. Statistical downscaling encompasses a heterogeneous group of methods that vary in 

sophistication and applicability (see Table 2 and Annex A).  

Statistical downscaling methods are computationally inexpensive in comparison to RCMs that require 

complex modeling of physical processes. Thus, they are a viable and sometimes advantageous alternative 

for institutions that do not have the computational capacity and technical expertise required for 

dynamical downscaling. Unlike RCMs, which produce downscaled projections at a spatial scale of 20–50 

kilometers, statistical methods can provide station-scale climate information.  

                                                

 

5  A variable that can be used to predict the value of another variable. In downscaling, the predictor is the large-scale climate 
variable. 
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2.2.2 Assumptions and Caveats 

Although statistical downscaling is efficient, computationally inexpensive, and consists of a diverse group 

of methods, it contains the following inherent assumptions: 

1. The statistical relationship between the predictor and predictand does not change over time. 

2. The predictor carries the climate change signal. 

3. There is a strong relationship between the predictor and predictand. 

4. GCMs accurately simulate the predictor. 

The first point is known as the stationarity assumption and postulates that the statistical relationship 

between the predictor and predictand remains stable into the future. Whether relationships based on 

present associations will be upheld under future climate conditions is unknown. The second is the 

assumption that the large-scale variable represents the climate system and captures any change that may 

occur in the future. Assumption three implies that the strength of the relationship should be initially 

evaluated to determine its validity. Assumption four relates to the ability of a GCM to simulate climate 

variables observed in the past as well as their future evolution. Predictor validations are usually 

performed prior to a given GCM’s use in downscaling schemes. 

2.2.3 Main Categories 

Statistical downscaling consists of a heterogeneous group of methods that vary in sophistication and 

applicability. They are all relatively simple to implement but require a sufficient amount of high-quality 

observational data.  

Methods can be classified into three main categories: 

1. Linear methods: Establish linear relationships (i.e., some type of proportionality), between 

predictor(s) and predictand. Linear methods are very straightforward and widely used, and they can 

be applied to a single predictor-predictand pair or spatial fields of predictors-predictands. The 

greatest constraint is the requirement of a normal distribution of the predictor and the predictand 

values, which means that it cannot be used to predict the distribution of daily rainfall because it is 

typically non-normal (frequent small amounts of rainfall and a few heavy events generally make the 

distribution not symmetrical). These methods are primarily used for spatial downscaling. 

2. Weather classifications: The local variable is predicted based on large-scale atmospheric “states.” 

The states can be identifiable synoptic weather patterns or hidden, complex systems. The future 

atmospheric state, simulated by a GCM, is matched with its most similar historical atmospheric 

state. The selected historic atmospheric state then corresponds to a value or a class of values of the 

local variable, which are then replicated under the future atmospheric state. These methods are 

particularly well suited for downscaling non-normal distributions, such as daily rainfall. However, a 

large amount of observational daily data (e.g., 30 years of daily data for the region of interest) is 

required in order to evaluate all possible weather conditions. In addition, these methods are more 

computationally demanding in comparison to linear ones, due to the large amount of daily data 

analyzed and generated. 

3. Weather generators: These statistical methods are typically used in temporal downscaling. For 

example, they are used to generate daily sequences of weather variables (e.g., precipitation, 

maximum and minimum temperature, humidity, etc.) that correspond to monthly or annual averages 

or amounts. Temporal downscaling is necessary for some impact models that require local spatial 
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data at a daily resolution, which GCMs cannot reliably provide. Weather generators produce 

sequences of daily values, but since different weather sequences may be associated with a given set 

of, for example, monthly values, multiple sequences commonly are generated to be further used in 

impact models. Weather generators are data-intensive, require long sequences of daily data, and are 

sensitive to missing or erroneous data in the calibration set (Wilby et al., 2009). In addition, only 

some weather generators have the ability to account for the coherency among variables when 

multiple variables are predicted, e.g., to generate a daily sequence of insolation that matches the 

generated daily sequence of rainy and dry days. 

Table 2 identifies various statistical downscaling methods under the “linear,” “weather classification,” 

and “weather generator” categories, along with particular variable requirements, advantages, and 

disadvantages. Annex A describes each category and method in greater detail. 

TABLE 2. STATISTICAL DOWNSCALING CATEGORY, METHOD, PREDICTOR AND 

PREDICTAND VARIABLES, ADVANTAGES, AND DISADVANTAGES  

Category & Method Predictor & 

Predictand 

Advantages Disadvantages 

Linear 

Methods 

spatial 

Delta 

method 

Same type of 

variable (e.g., both 

monthly 

temperature, both 

monthly 

precipitation) 

 Relatively 

straight-

forward to 

apply 

 Employs full 

range of 

available 

predictor 

variables 

 Requires normality of 

data (e.g., monthly 

temperature, monthly 

precipitation, long-term 

average temperature) 

 Cannot be applied to 

non-normal 

distributions (e.g., daily 

rainfall) 

 Not suitable for 

extreme events 

Simple 

and 

multiple 

linear 

regression 

Variables can be of 

the same type or 

different (e.g., both 

monthly 

temperature or one 

monthly wind and 

the other monthly 

precipitation) 

CCA& 

SVD 

Weather 

Classification 

Spatial and 

temporal 

Analog 

method 

Variables can be of 

the same type or 

different (e.g., both 

monthly 

temperature, one 

large-scale 

atmospheric 

pressure field and 

the other daily 

rainfall) 

 Yields 

physically 

interpret-

able linkages 

to surface 

climate 

 Versatile, 

i.e., can be 

applied to 

both 

normally and 

non-

 Requires additional step 

of weather type 

classification 

 Requires large amount 

of data and some 

computational resources  

 Incapable of predicting 

new values that are 

outside the range of the 

historical data 

Cluster 

analysis 

ANN 

SOM 
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Additional information about each method is included in Annex A. 

2.3 SUMMARY OF DOWNSCALING APPROACHES 

Table 3 attempts to summarize and compare different aspects of the dynamical and statistical 

downscaling approaches. 

TABLE 3. ADVANTAGES, DISADVANTAGES, OUTPUTS, REQUIREMENTS, AND 

APPLICATIONS OF DYNAMICAL AND STATISTICAL DOWNSCALING 

 

Dynamical downscaling Statistical downscaling 

P
ro

v
id

e
s 

 20–50 km grid cell information 

 Information at sites with no observational 

data 

 Daily time-series 

 Monthly time-series 

 Scenarios for extreme events 

 Any scale, down to station-level information 

 Daily time-series (only some methods) 

 Monthly time-series 

 Scenarios for extreme events (only some 

methods) 

 Scenarios for any consistently observed 

variable 

normally 

distributed 

data  

 

Weather 

Generator 

Spatial and 

temporal 

LARS-WG Same type of 

variable, different 

temporal scales 

(e.g., predictor is 

monthly 

precipitation and 

predictand is daily 

precipitation) 

 Able to 

simulate 

length of 

wet and dry 

spells 

 Produces 

large 

number of 

series, which 

is valuable 

for 

uncertainty 

analysis 

 Production 

of novel 

scenarios 

 

 Data-intensive 

 Sensitive to missing or 

erroneous data in the 

calibration set 

 Only some weathers 

generators can check 

for the coherency 

between multiple 

variables (e.g., high 

insolation should not be 

predicted on a rainy 

day)  

 Requires generation of 

multiple time-series and 

statistical post-

processing of results 

MarkSim 

GCM 

NHMM Variables can be of 

the same type or 

different (e.g., both 

monthly 

temperature, one 

large-scale 

atmospheric 

pressure and the 

other daily rainfall) 
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Dynamical downscaling Statistical downscaling 

R
e
q

u
ir

e
s 

 High computational resources and 

expertise 

 High volume of data inputs 

 Reliable GCM simulations 

 Medium/low computational resources 

 Medium/low volume of data inputs 

 Sufficient amount of good quality 

observational data 

 Reliable GCM simulations 

A
d

v
a
n

ta
g
e
s 

 Based on consistent, physical mechanism 

 Resolves atmospheric and surface 

processes occurring at sub-GCM grid 

scale 

 Not constrained by historical record so 

that novel scenarios can be simulated 

 Experiments involving an ensemble of 

RCMs are becoming available for 

uncertainty analysis  

 Computationally inexpensive and efficient, 

which allows for many different emissions 

scenarios and GCM pairings 

 Methods range from simple to elaborate and 

are flexible enough to tailor for specific 

purposes 

 The same method can be applied across 

regions or the entire globe, which facilitates 

comparisons across different case studies 

 Relies on the observed climate as a basis for 

driving future projections 

 Can provide point-scale climatic variables for 

GCM-scale output 

 Tools are freely available and easy to 

implement and interpret; some methods can 

capture extreme events 

D
is

a
d

v
a
n

ta
g
e
s 

 Computationally intensive 

 Due to computational demands, RCMs 

are typically driven by only one or two 

GMC/emission scenario simulations 

 Limited number of RCMs available and no 

model results for many parts of the globe 

 May require further downscaling and bias 

correction of RCM outputs 

 Results depend on RCM assumptions; 

different RCMs will give different results 

 Affected by bias of driving GCM 

 High quality observed data may be 

unavailable for many areas or variables 

 Assumes that relationships between large 

and local-scale processes will remain the 

same in the future (stationarity assumptions) 

 The simplest methods may only provide 

projections at a monthly resolution 
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Dynamical downscaling Statistical downscaling 

A
p

p
li
c
a
ti

o
n

s 

 Country or regional level (e.g., European 

Union) assessments with significant 

government support and resources 

 Future planning by government agencies 

across multiple sectors 

 Impact studies that involve various 

geographic areas 

 Weather generators in widespread use for 

crop-yield, water, and other natural 

resource modeling and management 

 Delta or change factor method can be 

applied for most adaptation activities 

 

Sources: STARDEX, 2005; Fowler et al., 2007; Wilby et al., 2009; and Daniels et al., 2012 

2.4  KEY TAKEAWAYS 

  

 Choosing an appropriate downscaling method depends on the desired spatial and 
temporal resolution of the climate information, as well as resource and time constraints. 

A thorough investigation of these factors is required, and assistance from experts is 

recommended. 

 In general, statistical methods are most appropriate if time and financial resources are a 
constraint.  

 Large climate institutions and regional assessment projects primarily use RCMs to 
investigate climate over larger areas. 
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3.0 ANALYSIS OF 

DOWNSCALING 

PROCEDURES IN REPORTS 

Various institutions commonly produce reports that identify regions of climate change and their impacts 

via high-resolution maps. Downscaling methods are used to create these maps, and it is important to 

understand the methodology to assess the validity of the results. Reports should clearly describe how 

the downscaling procedure was performed as well as caveats and limitations. Without this explanation, a 

knowledgeable downscaling reader must research how the maps were produced, and a reader with 

limited downscaling knowledge can be misled into thinking that the results are robust and that they can 

be taken at face value.  

3.1 CCAFS REPORT NO. 5: MAPPING HOTSPOTS OF CLIMATE CHANGE 

AND FOOD INSECURITY IN THE GLOBAL TROPICS 

This study was conducted by the Consultative Group on International Agricultural Research (CGIAR) 

Program on Climate Change, Agriculture and Food Security (CCAFS) to identify areas in the tropics that 

are food insecure and vulnerable to the impacts of future climate change. A range of indicators was used 

to map “hotspot” locations where climate change impacts are projected to become increasingly severe 

by 2050. The type of climate change hotspots was defined by thresholds. An example of such a 

threshold is shown in Figure 8, in which a detailed map displays areas that are projected to experience 

more than a 5-percent reduction in length of growing period (LGP). The LGP is defined by the average 

number of growing days per year that exceed a specific temperature and evapotranspiration value and 

begins when a certain number of these days have occurred in a row (Ericksen et al., 2011). 

 

FIGURE 8. AREAS THAT WILL EXPERIENCE MORE THAN A 5-PERCENT 

REDUCTION IN LGP 

Source: Ericksen et al., 2011 
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In order to produce a map that accurately 

shows this information, climate output 

from a variety of models, downscaled to a 

daily resolution, is required. In the report, 

it is stated that the hotspot indicators were 

derived from the mean outputs of four 

climate models, that there are many 

uncertainties associated with these 

indicators, and that different climate 

models give different results (Ericksen et 

al., 2011). This explanation is vague (e.g., 

downscaling is not explicitly mentioned), 

and further reading of another report 

(Jones et al., 2009), which is cited in 

CCAFS Report No. 5, was required.  

Only in Jones et al. (2009) are the 

downscaling steps from raw GCM output 

to daily, high spatial resolution information 

described with enough detail. This 

procedure is summarized in Figure 9 and 

appears to be rather complex and use 

multiple methods.   

It is not absolutely necessary for the reader 

to understand all downscaling details; 

however, she or he should get an idea of 

the various data and procedures that are 

used to create high-resolution climate 

information maps. Those multiple steps 

were not adequately described in the 

report.  

On the positive side, uncertainties are 

provided in the appendix of the report and 

represented as probabilities. However, no 

further discussion of the impact of those 

uncertainties on the results is provided.  

3.2 CASE STUDY: JAMAICA — IMPACT OF CLIMATE CHANGE ON 
JAMAICAN HOTEL INDUSTRY SUPPLY CHAINS AND ON FARMER’S 

LIVELIHOODS 

The International Center for Tropical Agriculture (CIAT) and Oxfam produced this document to assess 

the impacts of climate change on farmer livelihoods and supply chains for 2030 and 2050. High 

resolution maps of crop suitability under future climate change conditions were produced. Figure 10 is 

an example of a suitability map for banana production. 

  

Source: Based on Jones et al., 2009 

Interpolate to 1km using WorldClim data 

Temporally downscale to daily values via MarkSim 

FIGURE 9. DOWNSCALING PROCEDURE 
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FIGURE 10. PROJECTED BANANA SUITABILITY IN JAMAICA 

In order to more fully describe how this map was created, unlike in the previous report, a methodology 

document is provided (Läderach et al., 2011).  

The overall downscaling procedure described in Läderach et al. (2011) is summarized below: 

1. Past monthly climatology from WorldClim at a 1 kilometer resolution was obtained.  

2. Large-scale (150–300 kilometers) monthly outputs from 19 GCMs were obtained for the historical 

period and future time periods (2010–2039 and 2040–2069).  

3. The delta method was used to derive downscaled climate projections for 2030 and 2050, i.e., the 

ratio between future and current GCM-simulated climate was computed, and this ratio was 

multiplied by the local-scale WorldClim data.  

4. A crop suitability model was run using the downscaled climate projections in order to obtain an 

overall crop suitability rating.   

This map is very detailed and provides high-resolution information of future crop conditions, which 

should be interpreted carefully and cautiously by the reader. An important component in this 

downscaling procedure, which is not described or displayed, would be to assess the range of climate 

projections from the various GCMs. GCMs do not produce the exact same results, and it is critical to 

show these differences to understand uncertainties.  

In this study, WorldClim data is used because of its high resolution; however, it contains some 

limitations, which should be articulated in the report. WorldClim data are interpolated, which involves 

estimating unknown data value from known ones. This process can be inaccurate in regions where the 

landscape and elevation vary from one data point to the next. The use of actual station data would be 

preferable, but such data is sparse in the region analyzed in the document.  

Finally, a validation of the results is not provided. Crop suitability modeled under current conditions 

should be compared to observed crop distribution to assess bias introduced by using the crop model.  

Source: Eitzinger et al., 2011 
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3.3 WESTERN WATER ASSESSMENT: CLIMATE CHANGE IN COLORADO 

The report, “Climate Change in Colorado,” by the Western Water Assessment for the Colorado 

Water Conservation Board synthesizes climate change science that focuses on observed trends; 

modeling; and projections of temperature, precipitation, snowmelt, and runoff. This study summarizes 

specific findings from peer-reviewed regional studies and presents new graphics derived from existing 

datasets. It is a comprehensive and thorough document that describes the steps, data, and downscaling 

methods used to produce the images. 

Climate projections for North America are clearly identified in the report and illustrated in Figure 11. 

The mean and range of temperature change and percent change in precipitation are provided. It is stated 

in the report that climate model projections are based on the Coupled Model Intercomparison Project 

phase 3 (CMIP3) multi-model dataset, which consists of 112 model runs from 16 GCMs using various 

emissions scenarios. Temperature and precipitation changes over North America are projected for 

2050, and changes are shown relative to the 1950–1999 baseline average. The top row is the multi-

model average temperature change for the annual mean (left), winter (center), and summer (right). The 

second row shows the percent change in total precipitation. Also, there is stronger agreement among 

the models for precipitation changes in the north compared to the south, as shown in the third row. 

FIGURE 11. CLIMATE PROJECTIONS FOR NORTH AMERICA 

Top row: multi-model average temp. change for annual mean (left), winter (center), and summer (right). Second 

row: percent change in total precipitation. Third row: model agreement for precipitation. Source: Ray et al., 

2008 
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The procedure for generating these maps is 

robust, because projections are made via many 

GCMs driven by various emissions scenarios. 

Additionally, the degree of agreement among 

models is demonstrated, which identifies 

regions where there is more confidence in 

projections. Since downscaling was not 

performed, conclusions about climate changes 

were not made for areas less than ~100–500 

kilometers (the resolution of a GCM).  

The maps on Figure 12 show much higher 

spatial resolution information, in which 

observed average daily temperature in January 

in Colorado for the 1950–1999 period and 

projections for 2050 are represented in the 

top and bottom images, respectively. 

Observed climatological averages are taken 

from PRISM, a sophisticated climate mapping 

system for the entire United States which 

incorporates point data, a digital elevation 

model, and expert knowledge of complex 

climate systems to produce estimates of 

climate factors, e.g., temperature, 

precipitation, etc. Monthly climatologies, i.e., 

average monthly values over 1981–2010, are 

available at an 800 m resolution. Values for 

each month for every year are available at a 

4km resolution. It is important to make the 

distinction that PRISM is not a predictive tool. 

It is a mapping system that produces historical 

climate information. Projections were 

downscaled and calculated via the delta 

method, in which the GCM multi-model 

average temperature change was added to the 

observed climatology. 

This report also describes caveats and 

uncertainty inherent in these images. Although 

PRISM is a legitimate dataset and the delta 

method is a commonly used downscaling 

method the authors state that “temperature 

climatology does not capture year-to-year or 

day-to-day variations and neither do the 

climate projections.” It is further specified that 

until higher-resolution dynamical downscaling 

is performed, and projected local land use and potential ecosystem changes are considered, it will be 

difficult to determine these local variations (Ray et al., 2008). To determine climate change impacts on 

runoff and snowpack, various studies were investigated, but original analysis was not performed. The 

Western Water Assessment did not use the downscaled projections (described above) to run a 

hydrologic model. Instead, it is concluded that runoff and snowpack are expected to decline by a certain 

Source: Ray et al., 2008 

FIGURE 12. OBSERVED AVERAGE DAILY 

TEMPERATURE IN JANUARY IN COLORADO 

FOR 1950–1999 (TOP) AND PROJECTIONS 

FOR 2050 DOWNSCALED VIA THE DELTA 

METHOD (BOTTOM) 
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percentage based on the results of previous studies. However, the procedure by which runoff and 

snowpack projections were obtained in previous studies is not well described. In each study, it is 

questionable whether a multi-model GCM ensemble was used to obtain large-scale projections, and few 

details are provided about the downscaling procedure. Additionally, minimal information about the 

validity of the hydrological model is provided.  

3.4 KEY TAKEAWAYS 

  

 It is important to critically analyze reports that produce high-resolution climate change 

impact maps. Numerous steps and assumptions are required to obtain such maps from 

large-scale climate projections.  

 Reports should clearly describe the procedures used to derive high-resolution 
information on climate change and its impacts and should discuss the uncertainties and 

limitations of the results. 

 Uncertainties associated with emission scenarios and GCMs should be addressed, and 
their impact on final results should be assessed. 

 Validation of gridded/interpolated datasets and of impact models under current climate 
should also be provided and discussed. 
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4.0 CONCLUSION 

The downscaling of global climate change projections has been developed to serve the needs of decision 

makers who require local climate information for impact assessments. GCMs provide information at 

scales on the order of 100–500 kilometers for studies that focus on large geographic regions and 

direction of change, e.g., increase or decrease in temperature. Downscaling to 10–50 kilometers is 

necessary for the assessment of region- and station-scale climate information. GCM output can be 

downscaled via dynamical and/statistical means that vary in sophistication and applicability.  

Dynamical downscaling that involves the use of a regional climate model nested within a GCM is based 

on physically consistent atmospheric relationships that can result in the simulation of unprecedented 

values. However, this method is computationally complex and data intensive, produces 20–50 

kilometers grid cell information, and may require further statistical downscaling to obtain a spatial 

resolution of  less than20 kilometers.  

In statistical downscaling, relationships are established to associate large- and regional-scale climate 

information. This method is computationally inexpensive and efficient, and station-scale climate 

information can be generated; however, a sufficient amount of observational data that may be 

unavailable for many areas is required to develop the equations. Additionally, its primary assumption, 

that the relationships between present large and local-scale processes will remain the same in the future, 

is not verifiable.  

Various reports that provide high-resolution climate impact information have been produced for the 

decision-making community but should be interpreted carefully. Climate information at spatial scales of 

10–50 kilometers is obtained using various downscaling methods that have limitations and assumptions 

that are often omitted in reports, and uncertainty inherent in projections is often not highlighted. These 

factors should be kept in mind when the interpreting the results. 

4.1 RECOMMENDATIONS 

It is difficult to recommend which downscaling method is best, since the goals and resources of each 

study are unique. Choosing the appropriate method depends on the user’s needs and can vary according 

to the spatial and temporal resolution of the desired information and the climate variables that have the 

highest impact on the region and/or sector being considered. For example, a vulnerability assessment 

that investigates climate change impacts on agriculture in the tropics will focus on total rainfall and dry 

spells during the growing season, while a water and disaster risk assessment will focus on the variable of 

extreme rainfall.  

Although is it difficult to suggest a particular method, it is possible to make the following 

recommendations: 

 It is best to partner with a climate scientist or downscaling expert who can help to uncover the 

techniques applied in existing downscaling data and methods, assess them in terms of their 

limitations, and determine the most appropriate downscaling method — i.e., downscaling should not 

be undertaken by the user alone. 

Source: Ray et al., 2008 Source: Ray et al., 2008 
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 In using/interpreting published results: 

 Be wary of high-resolution maps. To produce such maps, downscaling is required, and it is 

important to research the process to determine limitations and uncertainties. 

 Keep in mind that uncertainties arising from different sources are inherent to the projection 

process. Therefore, results should not be taken at face value, especially when no explicit 

uncertainty assessment is provided; alternatively, they should be construed as broad indicators 

of potential changes and impacts, dependable at larger scales even if presented at fine scales. 

 In planning a sub-regional climate change and its impact assessments: 

 Consider whether the decisions/situations at hand really require downscaling. For certain 

resource assessments, monthly or annual scenarios derived directly from GCM outputs may be 

sufficient; in some cases, climate information will be used in conjunction with rather broad-scale 

indicators, and no value would be added by downscaling climate projections. 

 Investigate whether projections at appropriate scales already have been produced. Numerous 

regional climate change assessment projects provide downscaled data and/or tools that are 

freely available; however, their relevance for the problem at hand and their limitations still need 

to be assessed. 

 If an original downscaling is necessary, explicitly include and investigate appropriate methods to 

downscale and contextualize the climate change information for the area of interest given time 

and resource constraints.  

 In general, statistical methods are most appropriate if time and financial resources are 

limited. However, they require a sufficient amount of historical climate data. 

 RCMs are still primarily used by regional or international institutions focusing on climate and 

in regional assessment projects over larger areas. A validation of the outputs at scales of 

interest is a necessary first step; further statistical bias correction or downscaling might be 

required. 

 Include an assessment of uncertainty. 

 Use outputs from various GCMs to quantify the degree of uncertainty in the projections. 

 Ideally, multiple downscaling methods should be utilized to assess further impacts of 

assumptions on local climate. 
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ANNEX A. STATISTICAL METHODS 

This appendix provides detailed information about the various statistical downscaling methods presented 

in Section 2.0 under the three main categories: linear methods, weather classification, and weather 

generator. 

LINEAR METHODS 

Linear downscaling methods are applied when the relationship between the predictor and the variable 

being predicted, termed the predictand, can be approximated by linear equations. 

Delta Method 

One of the simplest ways to statistically downscale GCM projections is to use the delta or change factor 

method. The “change factor” is the ratio between GCM simulations of future and current climate and is 

used as a multiplicative factor to obtain future regional conditions. For example, to determine future 

regional temperature (Tf), the following steps are involved: (1) the ratio (∂) between future (TF) and 

current (TC) GCM-simulated temperature is computed, and (2) this ratio is multiplied by the currently 

observed regional-scale temperature (Tc)6.  

Tf=∂ Tc, where ∂ = TF/TC  

The predictor is the currently observed temperature, and the GCM output is used to define the change 

factor by which to multiply the current observed temperature to obtain future values. More generally, 

the predictor and predictand need to be the same variable. Since the ratio between GCM simulations of 

future and current climate is used to obtain future regional climate, this method assumes that GCMs 

more reliably simulate relative change rather than absolute values (Hay et al., 2000). The main caveat is 

that the same ratio or relative change is applied to all regions lying within the same GCM grid point, 

which means that local differences in future climate due to local features will not be accounted for.  

Simple and Multiple Linear Regression  

A simple linear regression is a widely used method that establishes a linear relationship between one 

large-scale atmospheric predictor, e.g., GCM-simulated temperature, and one local predictand, e.g., 

local-scale temperature7, represented in the equation below as x and y, respectively. This relationship is 

generated by analyzing observational local-scale data and correlating it with GCM simulations. Once a 

relationship is established, it can be applied to derive projected local conditions using GCM simulations 

of the future climate as input.  

y = α + βx 

                                                

 

6  Note: this method can also be used to downscale any climate variable and is not limited to temperature. 

7  Predictor and predictand do not have to be the same variable. The predictor and predictand can be GCM-simulated 
surface pressure and observed rainfall, respectively. 
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When there are two or more predictor variables, e.g., large-scale rainfall and temperature, which 

influence the regional climate, a multiple regression equation can be built (see the equation below). To 

establish a multiple regression equation, a procedure known as forward selection is most commonly 

used in which the predictor variable that explains the most variance is first identified (x1). The rest of 

the variables are then searched and the one that most reduces the remaining unexplained variance is 

selected (x2). The procedure is repeated until no further improvement is obtained (Hay and Clark, 

2003).  

y = β0 + β1x1 + β2x2 + … + βkxk  

An assumption implicit in the linear regression methods is that the variables are normally distributed, i.e. 

symmetrically distributed around the mean of a bell-shaped curve and not skewed towards higher or 

lower values. Large-scale atmospheric circulation data is usually normally distributed but some variables, 

such as daily precipitation, deviate strongly from normality8 (Zorita and von Storch, 1999). Thus, linear 

regression is not suitable for analysis of daily precipitation and other highly skewed distributions (Hay 

and Clark, 2003).  

Spatiotemporal Methods: Canonical Correlation Analysis (CCA) and Singular Value 

Decomposition (SVD) 

Multiple regression analysis, described above, is a method that allows for the prediction of a single 

predictand variable from a set of predictor variables. However, in some instances, understanding the 

relationships between sets of multiple predictand and multiple predictor variables and their time 

evolution may be more valuable (Hair et al., 1998). For example, the predictand variable may no longer 

be one variable, but rather a collection of data recorded at various locations (Benestad, 2008).  

Canonical correlation analysis (CCA) and Singular value decomposition (SVD) are widely used 

spatiotemporal9 methods that allow for the study of interrelationships among spatially distributed coarse 

simulations and observed local-scale variables by determining the sets of patterns that have the 

strongest relationships over time. Both methods determine pairs of spatial patterns that have the 

strongest association, but CCA maximizes temporal correlations, while SVD maximizes the covariance 

(Wilks, 1995). 

Again, the main assumption underlying both methods is that the relationship between predictand and 

predictor is linear and that they are both normally distributed. Another caveat is that co-variance does 

not imply causality since co-variations between two fields or variables might be caused by a third 

variable. Therefore, CCA and SVD results should be interpreted carefully with an understanding of 

underlying physical relationships. 

WEATHER CLASSIFICATION  

Methods in this category can be applied to variables that have normal as well non-normal distributions. 

In weather classification schemes, the local variable is predicted based on a limited number of large-scale 

atmospheric “states”. The states can be identifiable synoptic weather patterns or hidden, complex 

systems. The future atmospheric state, simulated by a GCM, is matched with its most similar observed 

                                                

 

8  Describes a variable with a normal distribution. 

9  A spatiotemporal method refers to an analysis that addresses factors across both space and time.  



 

 

A Review of Downscaling Methods for Climate Change Projections  30 

atmospheric state. To that historic atmospheric state there corresponds a value, or a class of values, of 

the local variable, which are then replicated under the future atmospheric state.  

This class of methods is particularly well suited for downscaling non-normal distributions, such as daily 

rainfall or frequencies of occurrence; however, a large amount of observational daily data, e.g., 30 years 

of daily data for the region of interest, is required in order to evaluate all possible weather conditions. 

Also, daily data for both historical and future large-scale atmospheric states need to be analyzed, which 

is computationally demanding. 

Analog Method 

The analog method is a relatively simple statistical downscaling weather classification method. The large-

scale atmospheric circulation simulated by a GCM is compared to historical observations and the most 

similar is chosen as its analog. The simultaneously observed local weather is then associated to the 

projected large-scale pattern.   

In order to find an appropriate analog, a sufficiently long record of observations is required (Zorita and 

von Storch, 1999).  Assessment of the performance of the analog method for predicting normally and 

non-normally distributed variables determined that the analog method is most appropriate for non-

normal distributions, such as daily rainfall. However, this method is incapable of predicting new values 

that are outside the range of the historical record. Thus, new record-breaking precipitation values, 

which are likely to become more frequent in the future, cannot be forecasted (Benestad, 2008).  

Cluster Analysis 

Cluster analysis is a data reduction method that aggregates values within a dataset into a limited number 

of groups or classes (Schoof and Pryor, 2001). By searching for natural groupings or types, complex 

relationships can be identified and additional information about large to local-scale relationships can be 

understood (Gong and Richman, 1995) (Figure A.1).  

  

Source: Benestad, 2008 

Data is organized into different classes according to 

their distance to the nearest cluster of points 

(marked as red circles). 

FIGURE A.1. CLUSTER ANALYSIS 
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There are different ways in which data can be grouped. The hierarchical method of clustering treats 

each observation initially like a cluster and aggregates them based on predefined criteria until all 

observations have been grouped (Schoof and Pryor, 2001); nonhierarchical clustering allows 

reassignment of observations to different clusters as analysis proceeds (Corti, 2012). K-means is another 

popular clustering algorithm (Robertson et al., 2004).  

Cluster analysis can be applied to any kind of data: binary10, discrete, and continuous11 (Gong and 

Richman, 1995). Through cluster analysis, daily weather data can be grouped into synoptic types, 

weather regimes can be defined from upper air flow patterns, and members of ensemble forecasts can 

also be grouped (Corti, 2012). 

As in the analogue method, to estimate future values of a local predictand, the output from a GCM is 

compared to the large-scale observations over the historical period. Once a large-scale simulation is 

aggregated to a cluster, a random observation from the batch of data associated with this cluster is 

chosen as the local-scale prediction (Benestad, 2008). 

Artificial Neural Network (ANN) 

An artificial neural network (ANN) can be 

described as an algorithm that transforms an input 

data into an output data using stepwise nonlinear 

functions (Benestad, 2008). An ANN can 

represent any arbitrary nonlinear function given 

sufficient training and can generalize a relationship 

from a small subset of data. The topology of the 

network involves a number of interconnected 

nodes (neurons) arranged into three layers: input, 

hidden, and output (Figure A.2). The input and 

output layers represent large-scale and local 

climate information, respectively. The ANN must 

first be calibrated based on historical data. 

Various weights and biases are applied to each 

neuron and adjusted during the training period in 

order to match the network and actual outputs 

(Dawson and Wilby, 1998). Once the network is 

appropriately trained, high-resolution local climate 

data can be derived from large-scale circulation information.   

ANN derives a nonlinear relationship between atmospheric and local-scale climate variables and 

provides an alternative to many statistical models that are limited by assumptions of linearity, normality, 

etc. To derive the relationship, a long time-series of good quality data is required during the training 

period. ANN is primarily used to obtain daily precipitation at a local scale (Cavazos, 2000). A major 

drawback is its complexity; it is difficult to interpret physical relationships since the hidden layers result 

                                                

 

10  Data whose unit can take on only two possible values. 

11  Discrete data contains distinct values, whereas continuous data can assume any value within a range. 

     Source: Dawson and Wilby, 1998 

FIGURE A.2. A BASIC OVERVIEW OF 

ARTIFICIAL NEURAL NETWORK 

TOPOLOGY 
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in a lack of transparency. The ANN method has thus been coined as a “black box” approach (Benestad, 

2008). 

Self-Organizing Map (SOM) 

A self-organizing map (SOM) is a synoptic-pattern-based model that links observational station data to 

large-scale synoptic patterns. SOM contains one input layer that is fully connected to the output layer, 

shown in Figure A.3 (the Kohonen layer). During the training of the model, SOM analyzes the input 

(large-scale variable) and associates it with the output (local-scale variable), simultaneously. This is not 

the case in the analog and cluster analysis methods that analyze the large and local-scale variables 

separately. GCM-simulated large-scale future projections are used as the input to obtain future local-

scale conditions (Yin 2011).  

In comparison to other methods based on 

discrete data grouping, SOM presents 

several advantages: no assumptions are 

made about the data, i.e., distributions can 

be normal or non-normal; all data is 

represented in the model without prior 

reduction to a few states; and the 

relationship between nodes is easy to 

visualize, because the training procedure 

ensures that the least similar patterns will 

move to opposite corners of the map. 

SOM output provides probability and risk 

analysis information for impact studies. It is 

also commonly used to investigate the 

synoptic forcing of daily precipitation (Yin, 

2011). 

WEATHER GENERATORS 

A weather generator is a statistical model used to generate sequences of daily variables, e.g. daily 

precipitation, maximum and minimum temperature, humidity, etc., from monthly GCM output. It is 

useful for impact models that require local spatial data at a daily time-scale. Weather generators 

produce multiple daily weather series, which is natural and logically consistent because any number of 

small-scale weather sequences may be associated with a given set of larger-scale values. In other words, 

for a particular monthly rainfall projected in the future, the weather generator will produce numerous 

possible daily rainfall sequences that have the same statistical characteristics of those that occurred in 

the past with the same monthly average.   

Weather generators are data-intensive, require several years of daily data, and are sensitive to missing 

or erroneous data in the calibration set (Wilby et al., 2009). Also, when multiple variables are predicted, 

it is often crucial to account for the coherency between them. For example, insolation should be low on 

a rainy day.  

Long Ashton Research Station Weather Generator (LARS-WG) 

Long Ashton Research Station Weather Generator (LARS-WG) is a type of weather generator that 

simulates time series of daily weather at a single site (Semenov, 2012). It is based on a serial approach, 

Source: Yin, 2011 

FIGURE A.3. STRUCTURE OF TWO 

DIMENSIONAL SELF-ORGANIZING MAP  
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which has the ability to adequately describe the length of wet and dry series (CICS, 2006). For LARS-

WG in particular, the first step in the weather generation process is the analysis of observed station 

data in order to calculate its characteristics. Observations for precipitation, maximum and minimum 

temperature, and sunshine hours are used to create frequency distributions. Synthetic weather data12 is 

then generated by combining these statistical characteristics with a scenario file that contains 

information about changes in precipitation amount, wet and dry series duration, mean temperature, 

temperature variability, and solar radiation. The software allows for the assessment of the quality of the 

simulations via a comparison between statistical characteristics of the observed data and that of LARS-

WG simulations (CICS, 2006). 

MarkSim GCM 

MarkSim GCM is a weather generating software that provides daily information of future climatologies 

for any point on the globe based on existing GCM projections (CCFAS, 2011). This tool produces 

average annual distribution of daily rainfall, maximum and minimum temperature and solar radiation for 

the 21st-century (Jones and Thornton, 2013). It is embedded in Google Earth, and the user can choose 

greenhouse gas emission scenarios and GCM outputs (CCAFS, 2011). 

MarkSim GCM generates downscaled projections by: 1) spatially downscaling GCM output using the 

delta method, 2) stochastically generating daily series based on a previously performed calibration 

procedure that involved clustering observations from more than 10,000 stations worldwide, and 3) 

selecting an analogue among the clusters that best matches values generated by the GCMs (CCAFS, 

2011; Jones and Thornton, 2013). 

However, there are major caveats associated with MarkSim GCM. Since MarkSim GCM simply matches 

future climate simulations with a current climate cluster that is the most similar, future weather that is 

different from present day weather cannot be generated. The weather associated with the current 

climate cluster is associated with the future scenario, which may not be the case. Additionally, high 

rainfall variances13 are not well simulated (Jones and Thornton, 2013).  

Nonhomogeneous Hidden Markov Model (NHMM) 

A Nonhomogeneous hidden Markov model (NHMM) generates daily weather sequences assuming the 

existence of two processes: an observed process and a hidden process. The hidden process is the 

atmospheric circulation, which can be classified into a small number of unobserved discrete patterns 

called “weather states”. The succession of weather states is assumed to be stochastic and Markovian. A 

stochastic process involves some indeterminacy, i.e., there are several directions in which the process 

can evolve, each with a distinct probability. The probabilities of transitions between hidden states 

depend on characteristics of the atmosphere (Hughes et al., 1996). The observed process is the rain 

occurrence at a fixed location, which is conditioned by the hidden process (Figure A.4).  

  

                                                

 

12  Weather data produced by LARS-WG, which is different than the observed weather data. 

13  For example, the impact of El Niño-Southern Oscillation (ENSO) can lead to high rainfall variance. 
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FIGURE A.4. GENERAL STRUCTURE AND EVOLUTION OF HMM 

 

Source: Robertson and Verbist 

To downscale future climate projections, changes in the probabilities of hidden states under future 

conditions are estimated and time-series of localized rainfall occurrence are generated. As in other 

weather generators, multiple time-series are generated. NHMM is a very useful tool for generating 

realistic simulations of precipitation and understanding the relationships between atmospheric 

circulation patterns and rainfall. It is commonly used method by hydrologists who need localized daily 

rainfall information for modeling purposes (Hughes et al., 1996). 

But the method relies on hidden states often difficult to interpret. In addition, the correct or optimal 

order and number of states must be carefully determined. Also, simulation of rainfall occurrence at 

locations not been explicitly included in the model has not been developed (Hughes et al., 1996).  

MIXED METHODS AND TOOLS 

Frequently, multiple methods are used sequentially. For example, if the goal is to obtain localized daily 

precipitation, spatial downscaling may first be applied followed by a weather generator. Methods 

described below involve both spatial and temporal downscaling. 

Bias-Corrected Spatial Disaggregation (BCSD)  

Bias-corrected spatial disaggregation (BCSD) is a statistical method that originated from the requirement 

to downscale ensemble climate model forecasts14 at spatial and temporal scales appropriate for 

hydrological modeling. This method involves two steps: bias correction and weather generation. In the 

bias correction step, GCM monthly averaged climate variables for a baseline time period, e.g., 1950–

1999, are compared to a time series of gridded observed data at the same spatial scale and time period. 

GCM simulations for a future time period are then adjusted based on this comparison. Finally, the 

weather generation step produces daily weather stochastically and provides possible daily weather 

sequences for a future time period. Note that in this method, the predictor and predictand variables are 

the same, e.g., both temperature, but have different spatial or temporal timescales. 

The daily patterns of rainfall associated with future monthly projections are an artifact of the historical 

information from the baseline period. They are not novel and do not reflect changes to statistical 

                                                

 

14  An ensemble forecast is the average of many forecasts produced by the same model with slightly different initial 
conditions. By averaging many possible outcomes, the ensemble reduces forecast uncertainty.  
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properties of future climate, e.g. changes in the frequency of rainfall events that may happen in the future 

are not represented (Werner, 2011). 

The World Bank, The Nature Conservancy, Climate Central, and Santa Clara University have 

collaboratively used BCSD to produce a standardized set of downscaled climate projections for the 

entire globe, which are available via the Climate Change Knowledge Portal. BCSD is computationally 

efficient and it can be suitably used to perform spatial downscaling and bias correction for a large 

amount of GCM outputs (Ahmed et al., 2013). 

Statistical DownScaling Model (SDSM)  

The Statistical DownScaling Model (SDSM) is freely available software in which multiple linear regression 

methods are used to spatially downscale daily predictor-predictand relationships (CICS, 2006). SDSM 

provides climate information at specific locations for which there is daily data adequate to calibrate the 

model, as well as archived GCM output (Wilby and Dawson, 2013). Key inputs include quality observed 

daily data for both local-scale and large-scale climate variables as well as daily GCM outputs for large-

scale variables for future climate (UNFCCC, 2013). Outputs can be applied over a range of climate 

impact sectors and include site-specific daily scenarios for maximum and minimum temperatures, 

precipitation, and humidity. A range of statistical parameters such as variance, frequencies of extremes, 

and spell lengths are also produced (UNFCCC, 2013). 
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ANNEX B. REGIONAL CLIMATE 

CHANGE ASSESSMENT PROJECTS 

This appendix describes some of the most important regional climate change assessment projects that 

properly perform downscaling. Most of them have undergone intensive research (e.g., used multiple 

models), to ensure the validity of their results.  

PREDICTION OF REGIONAL SCENARIOS AND UNCERTAINTIES FOR 

DEFINING EUROPEAN CLIMATE CHANGE RISKS AND EFFECTS 

(PRUDENCE) 

The primary goal of Prediction of Regional Scenarios and Uncertainties for Defining European Climate 

Change Risks and Effects (PRUDENCE), a three-year European Union project that ended in 2004, was 

to provide high-resolution climate change scenarios for 21st-century Europe via dynamical downscaling. 

It was the first comprehensive and continental-scale project that evaluated and inter-compared high-

resolution climate models and their applications (Christensen et al., 2007). 

Several European research groups contributed to the project and the model output is freely available to 

the general research community. Four GCMs and eight RCMs were used for simulations. Most RCMs 

were run at a ~50 kilometers spatial scale and some were run at ~20 kilometers and ~10 kilometers 

(Christensen et al., 2007). For both the A2 and B2 scenarios, summer warming and drying over most of 

the European region was found. Maximum dry spell length, maximum precipitation intensity, and an 

interannual increase in variability during the summer were also projected. These simulations are 

consistent with trends of summer climate observed over Europe in recent decades (Christensen, 2005). 

Results from PRUDENCE indicate that application of RCM-based scenarios for impact studies is 

significantly advantageous in comparison to use GCM-based scenarios. However, sole reliance on RCMs 

is not appropriate either (Christensen et al., 2007). Multi-model ensembles can be used to address 

projection uncertainties (Christensen, 2005). 

For more information, refer to: http://prudence.dmi.dk/main.html 

ENSEMBLE-BASED PREDICTIONS OF CLIMATE CHANGES AND THEIR 

IMPACTS (ENSEMBLES) 

ENSEMBLE-Based Predictions of Climate Change and their Impacts (ENSEMBLES) was a five-year (2004–

2009) research project led by the UK Met Office and funded by the European Commission. It involved 

various partners across Europe. It was established based on the need to make reliable estimates of 

climate risk, and an ensemble of regional models was deemed the most appropriate method to 

accomplish this goal. The project was the first effort to develop an ensemble prediction system to 

construct integrated scenarios of future climate change in Europe for quantitative risk assessment 

(Hewitt and Griggs, 2004). More specifically, the project succeeded in doing the following: 

 Produced probabilistic climate projections of temperature and rainfall for the 21st-century via an 

ensemble prediction system 
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 Assessed the impacts of climate change on agriculture, health, energy, water resources, and 

insurance 

 Increased the certainty in predictions by contributing to the understanding of physical, chemical, 

biological, and human-related feedbacks in the climate system 

 Developed high-resolution climate observation datasets for Europe for the purpose of validation of 

ensemble predictions 

A primary goal of the project was to maximize the usage of the results by linking the outputs of the 

ensemble prediction system to a range of applications which use high resolution climate inputs to feed 

their models, including agriculture, health, food security, energy, water resources, insurance, and 

weather risk management, (Hewitt and Griggs, 2004). The ENSEMBLES Downscaling Portal allows users 

to downscale their own data using existing downscaling techniques and simulation datasets. This 

alleviates the historical difficulty for end-users to access stored simulations and post-process them 

according to their needs.  Users can choose predictors, predictands, and transfer functions to be used in 

the downscaling process. They can then perform a quality assessment to verify results and ultimately 

download downscaled data (Cofiño et al., 2009). 

For more information, refer to: http://www.ensembles-eu.org/ 

A EUROPE-SOUTH AMERICA NETWORK FOR CLIMATE CHANGE 

ASSESSMENT AND IMPACT STUDIES (CLARIS) 

The Europe-South America Network for Climate Change Assessment and Impact Studies (CLARIS) 

project was a three-year interdisciplinary project established in 2008 to build an integrated European-

South American network dedicated to promote common research strategies to observe and predict 

climate changes and their socio-economic impacts in South America. In order to assess impacts and 

provide information to policy-makers, obtaining reliable simulations at the regional-scale is a central 

issue (Menéndez et al., 2010). To accomplish this goal, climate data sets, simulations, and the appropriate 

framework to compare and exchange methodologies between European and South American scientists 

were gathered. In addition, a bridge between the climate research community and stakeholders in South 

America was created to demonstrate the potential of using climate information in agriculture, health, 

and air-pollution decision-making processes (Boulanger et al., 2010). 

Dynamical downscaling was performed with five RCMs (MM5, PROMES, RCA3, REMO, and WRF) and 

one stretched-grid global model (LMDZ) to simulate extreme precipitation and temperature of the past 

to determine which models perform best for South America. The results showed that the performance 

of each model depended on the simulated climate, region, and variable of interest. Despite some 

consensus that a multi-model ensemble gives in general the best climate depiction, the multi-model 

composite was not distinctively better than a single good model in this case. Further investigation as to 

why this occurred is required (Menéndez et al., 2010). 

Other climate simulations carried out during the CLARIS project are still being analyzed as well as more 

recent ones under the new CLARIS-LPB (La Plata Basin) project (Menéndez et al., 2010). This project is 

a more regionally focused study that aims to predict climate change impacts on La Plata Basin for the 

design of adaptation strategies in land-use, agriculture, rural development, hydropower production, river 

transportation, water resources, and ecological systems in wetlands. 

For more information, refer to: http://eolo.cima.fcen.uba.ar/objectives.html and http://www.claris-

eu.org/. 
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THE NORTH AMERICAN REGIONAL CLIMATE CHANGE ASSESSMENT 

PROGRAM (NARCCAP) 

The North American Regional Climate Change Assessment Program (NARCCAP) is an international 

program that provides climate scenario information for the United States, Canada, and northern Mexico. 

Its development was spurred by the lack of research on the uncertainty in future climate projections 

from RCMs. More specifically, NARCCAP’s scientific motivation is to explore the separate and 

combined uncertainties in regional climate simulations that result from the use of different GCMs that 

drive various RCMs. It also serves as a provider of regional climate change projections to the climate 

impacts and adaptation community. NARCCAP uses a variety of GCMs and RCMs so that climate 

impacts researchers can characterize multiple uncertainties in their assessments (Mearns et al., 2012). 

As a preliminary step to evaluate the performance of RCMs over the region, NCEP Reanalysis II data for 

the period 1979–2004 is used as the driver. NCEP Reanalysis II data is up-to-date gridded data that 

represents the large-scale state of the present and past atmosphere. To obtain projections for the 

current period (1971–2000) and 21st century, RCMs of a 50 kilometers spatial scale are nested within 

GCMs. For the 21st century projections, SRES A2 emissions scenario is used (UCAR, 2007). 

The RCMs that are being used include two from the European PRUDENCE program (HadRM3 and 

RegCM), the Canadian Regional Climate Model (CRCM), the NCEP regional spectral model (RSM), 

MM5, and the Weather Research and Forecasting model (WRF). The GCMs include the Hadley Centre 

HadCM3, National Center for Atmospheric Research (NCAR) CCSM, the Canadian CGCM3, and the 

GFDL model (UCAR, 2007; Mearns et al., 2012).  

Overall, the results are within the range of what has been found in other multi-model studies. It is 

difficult to determine which models perform best given the inherent spatial and temporal variability of 

the climate. Performance of the models varies substantially from one sub region to another, but they all 

simulate temperature more accurately than precipitation. When the ensemble average of all six RCMs is 

used to obtain metrics for mean temperature and precipitation, most metrics are well represented – but 

some are better simulated by a single regional model (Mearns et al., 2012).  

For more information, refer to: http://www.narccap.ucar.edu/ 

COORDINATED REGIONAL CLIMATE DOWNSCALING EXPERIMENT 
(CORDEX) 

Several international projects mentioned above have made significant contributions to downscaling 

efforts over a specific region. However, there has been limited international coordination and transfer of 

knowledge between these projects. The Coordinated Regional Climate Downscaling Experiment 

(CORDEX) was developed to bridge this gap and facilitate easier analysis by scientists and end-user 

communities at the local level. Twelve highly populated regions worldwide areas plus the Arctic and 

Antarctic have been defined, with Africa as a primary initial focus (Nikulin et al., 2012).  

Motivated by the critical concern over the water and food supply in Africa, the quality of RCM-simulated 

precipitation was investigated. Most RCMs capture the main climatological features of precipitation but 

with different levels of accuracy. The performance of 10 individual RCMs (ARPEGE, HIRHAM, RegCM3, 

CCLM, RACMO, REMO, RCA, PRECIS, WRF, and CRCM) and their ensemble average were evaluated 

and simulations were provided at ~50 kilometers resolution for the entire African continent. Seasonal 

means, West African monsoon rainfall, and annual and diurnal cycle simulations were obtained. In 

general, the multi-model average out-performs many of the individual models, most likely due to the 

cancelation of opposite-signed biases across the models. However, this ensemble average should not 

always be viewed as the most accurate simulation. Instead, Nikulin et al. (2012) conclude that an 
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ensemble average with increased RCMs and individual GCM-RCM members should be further 

investigated.    

For more information, refer to: http://wcrp-cordex.ipsl.jussieu.fr/ 

AFRICAN MONSOON MULTIDISCIPLINARY ANALYSES (AMMA) 

The African Monsoon Multidisciplinary Analyses (AMMA) was built by an international scientific group to 

improve knowledge and understanding of the West African Monsoon (WAM) and its variability. The 

impetus for the establishment of this project is based on the need to predict the WAM and its impacts 

on West African nations. Dry conditions in recent decades and their devastating impacts on populations 

and economies have drawn a large amount of financial support from multiple agencies around the globe. 

The main goals of AMMA follow:  

 Improve the understanding of the WAM’s regional and global influence on the physical, chemical, 

and biological environment. 

 Scientifically relate the variability of the WAM to health, water resources, food security, and 

demography issues in West Africa. 

 Implement relevant monitoring and prediction strategies. 

 Ensure that the multidisciplinary research conducted by the AMMA project is effectively integrated 

with prediction and decision-making activity. 

It is more difficult to forecast weather of short to medium range timescales in West Africa than in the 

extra-tropical regions of Europe or North America. This is due to the lack of routine weather 

monitoring and difficulty in simulating key elements of the WAM. For seasonal to interannual timescales, 

it is recognized that dynamical models may not be appropriate since they poorly represent the annual 

cycle and disagree on the sign and amplitude of rainfall changes. Statistical methods are therefore 

recognized as the most appropriate tool for the region. 

For more information, refer to: http://www.amma-international.org/spip.php?rubrique1 

STATISTICAL AND REGIONAL DYNAMICAL DOWNSCALING OF EXTREMES 

FOR EUROPEAN REGIONS (STARDEX) 

The goal of Statistical and Regional Dynamical Downscaling of Extremes for European Regions 

(STARDEX), which began in 2002 and ended in 2005, was to identify robust downscaling techniques to 

produce future scenarios of extremes for regions in Europe for the end of the 21st century. Statistical, 

dynamical, and statistical-dynamical downscaling methods were evaluated and inter-compared. An 

expected outcome of the project was to pinpoint and discover improved methodologies for the 

development of scenarios of extremes, with recommendations as to which perform best for different 

regions across Europe and for different variables (Salmon, 2002). 

The specific measurable objectives follow: 

1. Develop datasets of observed and simulated climate as well as a diagnostic software tool for 

calculating standard set of extreme event statistics. 

2. Analyze recent trends, causes, and impacts of extreme events over a wide variety of European 

regions. 
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3. Validate the European GCMs (HadCM3 and ECHAM4/OPYC3), particularly for extremes. 

4. Inter-compare various statistical, dynamical, and statistical-dynamical downscaling methods using 

data from the second half on the 20th century and determine which methods are most robust. 

5. Use the most appropriate statistical, dynamical, and/or statistical-dynamical downscaling methods to 

develop scenarios of extreme events for the late 21st century. 

Overall, the project concluded that there are uncertainties in regional scenarios of extremes due to the 

downscaling procedure, and that a multi-model approach, whether statistical or dynamical, is best. It was 

determined that in the majority of cases, no consistently superior statistical downscaling model can be 

identified, especially for the station-scale. It is thus recommended that a range of the most robust 

statistical downscaling methods be used, which is similar to the common and best practice of using a 

range of global and regional climate models. STARDEX additionally provided application criteria for 

dynamical and statistical downscaling general approaches for user needs (STARDEX, 2005).  

For more information, refer to: http://www.cru.uea.ac.uk/projects/stardex/ 
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ANNEX C. DOWNSCALING 

TOOLS AND SOFTWARE 

Interactive user-friendly tools are necessary to ease the downscaling process for end users and 

maximize the application of available projections. Various portals utilizing statistical and dynamical 

methods exist that directly downscale GCM output to the regional or local scale. Those portals are 

usually well documented and describe the main methods and datasets. Users can often test and validate 

different statistical and/or dynamical downscaling methods to ensure simulation accuracy.  

These products are accessible to the general public, so there is potential for misuse by users who are 

unfamiliar with the tools and software. To use them appropriately and obtain accurate downscaling 

results, the user must understand the kind of data and downscaling techniques inherent in the software.  

TABLE C.1. TOOLS, DESCRIPTIONS, AND LINKS TO USER-FRIENDLY 

DOWNSCALING SOFTWARE 

Tool/Source Description 

LARS-WG Tool for producing time-series of a suite of climate variables at single sites 

(http://www.rothamsted.ac.uk/mas-models/larswg.html) 

SDSM Software package that produces site-specific daily scenarios of climate variables 

and statistical parameters  

(http://co-public.lboro.ac.uk/cocwd/SDSM/) 

Clim. pact R functions for downscaling monthly and daily mean climate scenarios 

(http://cran.uvigo.es/web/packages/clim.pact/index.html) 

ENSEMBLES Experimental portal for downscaling tools applied to Europe 

(https://www.meteo.unican.es/downscaling/ensembles) 

FINESSI Multi-sector/multi-variable climate change scenarios for Finland 

(http://www.finessi.info/finessi/?page=explore) 

MAGIC/SCENGEN Interactive software for investigations of global/regional climate change 

(http://www.cgd.ucar.edu/cas/wigley/magicc/) 

PRECIS UK Met Office RCM  

(http://www.metoffice.gov.uk/precis/) 

SERVIR The Climate Mapper and SERVIR Viz 

(http://www.servir.net/en/The_Climate_Mapper_and_SERVIR_Viz) 

World Bank Climate Change Knowledge Portal 

(http://climateknowledgeportal.climatewizard.org/) 

ASD Automated statistical downscaling tool  

(http://loki.qc.ec.gc.ca/DAI/downscaling_tools-e.html) 

http://www.rothamsted.ac.uk/mas-models/larswg.html
http://co-public.lboro.ac.uk/cocwd/SDSM/
http://cran.uvigo.es/web/packages/clim.pact/index.html
https://www.meteo.unican.es/downscaling/ensembles
http://www.finessi.info/finessi/?page=explore
http://www.cgd.ucar.edu/cas/wigley/magicc/
http://www.metoffice.gov.uk/precis/
http://www.servir.net/en/The_Climate_Mapper_and_SERVIR_Viz
http://climateknowledgeportal.climatewizard.org/
http://loki.qc.ec.gc.ca/DAI/downscaling_tools-e.html
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CIAT Various models that use statistical and dynamical methods  

(http://www.ccafs-climate.org/) 

MarkSim GCM Stochastic weather generator  

(http://gismap.ciat.cgiar.org/MarkSimGCM/) 

 

  

http://www.ccafs-climate.org/
http://gismap.ciat.cgiar.org/MarkSimGCM/
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