Urban Poverty Mapping: Data and Methods

Alex de Sherbinin
CIESIN, The Earth Institute at Columbia University
Population-Environment Research Network (PERN)
adeshherbinin@ciesin.columbia.edu

PRIPODE Workshop on Urban Population, Development, and Environment Dynamics
11-13 June 2007, Nairobi, Kenya

Presentation Outline

- Measurement of poverty and well-being
- Advantages of high spatial resolution poverty data
- Sources of urban poverty data
- Statistical issues
- Research examples
Measurement of Poverty and Well-Being

Current State of Global Poverty?

- Close to 1 billion people (1/5 world’s population) lives on less than $1 day (estimate is 985.5 million as of 2004)
 - Good News: Some parts of the world are on track (East Asia) or have met (China) MDG 1 target for halving percentage of population living on less than $1 day.
 - Bad news: Others are at severely risk of failing (Sub-Saharan Africa).
There is great variation in urban-rural poverty differentials globally, but, at a national scale, urban dwellers are generally better off.

Still, there are spatial pockets of poverty within urban areas.

Analysis of infant and child mortality

For both infant and children, the chances of survival decrease monotonically the future one resides from a city (of 50,000 persons or more), in a 10-country West Africa study.
Steps to Measure Poverty

- First define an indicator of welfare
 - Most often measured according to income or consumption levels (expenditures on goods and services).
 - Data Typically Collected using Household Surveys
- Establish a minimum acceptable standard of welfare to separate the poor and the non-poor (often known as a poverty line)
- Poverty lines vary in time and place, and each country uses lines which are appropriate to its level of development, societal norms and values.

How do you determine the poverty line?

- Absolute Poverty Line: Determine amount of income or consumption expenditures necessary to meet minimum standards of living (food requirements, plus basic non-food expenditures such as housing, transportation and clothing)
- Relative: Use average standards of income or consumption as a yardstick with which to compare welfare of others
Other Measures of Well Being

- Household income/consumption expenditures
 - may not necessarily reflect attainment of minimum standards of well being
 - Food expenditures are an input, but the actual desired outcome is adequate nutrition. Better to measure nutrition directly

- Non-monetary indicators of well being
 - Malnutrition
 - Unsatisfied Basic Needs
 - Infant Morality Rates

Malnutrition

- Requires establishing a baseline measurements related to body size and composition (weight for age, height for age, or weight for height) against which to judge whether individual is malnourished.
- A child is considered malnourished if any of these indices falls below two standard deviations of the median value of international reference population. Severe malnutrition is when the indexes fall below three standard deviations.
Unsatisfied Basic Needs Indicators

- Household possessions of goods or services that are associated with well-being are used to measure poverty.
- The basic needs indicators are constructed by combining census level household measures such as access to adequate housing conditions, water, electricity, sanitation, and education, into a composite indicator of wellbeing for small administrative areas.
- Typically UBN indicators are reported for administrative units as the proportion of households that have one, two, three or four basic needs unmet.

Pros and Cons of UBN

- **Pros**
 - The indicators can be calculated from typical census data.
 - Yields geographically disaggregated data for areas as small as the census agency is willing to report.
 - Indicators can be compared across countries.
- **Cons**
 - Users of UBN are limited by the time between census dates, usually 10 years.
 - UBN measures are inputs to poverty, not outcomes.
Infant Mortality Rate: number of infant deaths per one thousand live births

Pros
- Data availability: National infant mortality rates are reported for nearly every country in the world.
- Definitions and measurements associated with infant mortality (i.e., deaths and live births) are well standardized across countries.
- Established methods to methods to adjust national rates to account for reporting and definitional differences across countries.

Cons
- The indicators typically calculated in developing countries from survey data (not vital registration systems).
 - Surveys estimating infant deaths require large samples, because such incidences are uncommon and representative households cannot ordinarily be identified for sampling.
 - Frequency of surveys: Every 2-3 years.
- Measures only one dimension of poverty.
- Since it is a rate, it is not straightforward to develop a head-count.
The Advantages of Higher Resolution Socioeconomic Data

Why are high spatial resolution socioeconomic data desirable?

- More efficient policies, strategies, and resource allocation
 - Disaggregated data can help to identify highest priority areas
 - If high priority units are clustered, the strategy will be different than if they are spread out
- Improved data for research purposes (understanding the correlates of poverty)
 - Can utilize high resolution poverty data in combination with high resolution biophysical, infrastructure (roads, health/education facilities), or other data
Small Area Estimates of Poverty

Census Tract Level Data
The urban-rural poverty differential that applies to a country as whole is not necessarily reflected uniformly across all urban-rural gradients within the country.

In Bangladesh, the pattern of poverty rates is primarily shaped by proximity to the capital Dhaka. In this map we can see that in general, poverty rates rise as one moves increasingly far from Dhaka. We can also see how the coastal remote areas are less disadvantaged than the inland remote areas. For the country as whole, the urban areas tend to be less poor than their rural counterparts.
This map compares poverty gaps in the capital, Llongwe, and Blantyre. Both cities are comparable in population (approximately a half million). Llongwe has far less poverty within its limits, but is surrounded by regions of very high poverty. Blantyre, by contrast, has very high poverty within its limits, but is surrounded by regions of only moderate poverty.

Comparisons between Regions

- Geographic resolution of data may be different within or between countries
 - Census units are generally delineated based on population size - units are smaller, more detailed, in urban areas vs. rural areas
 - Detail of survey / census data differs between countries
- Poverty lines will differ depending on urban vs. rural residence
Non-Uniformity Size of Units, Across Countries

Intra-urban definition in data

No intra urban information available
One national poverty line with information on urban and rural from survey respondents

Viet Nam: Urban and Rural Poverty Rates Based on a National Poverty Line

Separate urban and rural poverty lines

Kenya: Urban and Rural Poverty Rates Based on Distinct Urban and Rural Poverty Lines
Comparisons between Regions

- Comparing measures of poverty between countries
 - What can be compared
 - Consumption: if defined the same way and measured in PPP
 - Inequality: relative measure
 - What is more difficult to compare
 - Poverty rates: different poverty lines, different inputs into defining the poverty line.

Country Comparison

Average Daily Consumption (PPP)

<table>
<thead>
<tr>
<th>South Africa</th>
<th>Malawi</th>
<th>Mozambique</th>
<th>Madagascar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95 - 1.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.29 - 1.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.67 - 2.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.61 - 10.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.21 - 21.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graphs by country
Urban Poverty Data Sources

Other sources of information on urban populations

- Censuses
- Household surveys (DHS, MICS, LSMS)
- Blended model results linking surveys, censuses (small area estimation techniques)
Census vs. Survey

- **PROS**
 - Results can be representative for small geographic areas

- **CONS**
 - Costly to implement
 - Decennial
 - Limited number of questions

- **PROS**
 - Relatively lower costs
 - Annual / every few years
 - Can cover larger number or more focused set of issues

- **CONS**
 - Representative only for larger geographic areas

Census Data - Varies widely in quality and detail

- **Geographic detail**
 - US includes over 1 million geographic units; avg size of unit is less than 1 km²
 - South Africa includes over 83,000 geographic units; avg size of unit is less than 1 km²
 - Chad includes 14 geographic units; avg size of unit is 298 km²
 - Indonesia, close to 70,000 geographic units; avg size of unit is about 5 km²
 - Saudi Arabia includes 13 geographic units; avg size of unit is 386 km²
Some countries—e.g., Brazil, Mexico, China—have data at moderate-high resolution IMR and other data (e.g., e.) based on censuses. These countries tend not to have current DHS/MICS surveys. New methods should be flexible enough to think about data poor and data wealthier regions.

Survey Data – Strengths, Weaknesses

- Flexibility – can focus the survey questions specific a particular research interest - HIV/AIDS, beliefs etc.
- Generalizable – with good survey design, can get data from sample and apply information to the larger population.
- Can be implemented more often and cheaper than full census.

- Dependent on response rate
 - may have inherent bias due to self selection
- Comparability – different sets of questions may or may not be comparable between study areas.
 - Translation to different languages may lead to different meanings
Demographic and Health Surveys

<table>
<thead>
<tr>
<th>Number of city-regions surveyed</th>
<th>DHS Countries (n=54, since 1990)</th>
<th>MICS Countries (n=22, All Africa MICS 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1 Zimbabwe</td>
<td>1 The Gambia</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 Egypt</td>
<td></td>
</tr>
</tbody>
</table>

These DHS surveys have city modules with higher sampling. Good boundary files are not necessarily available for all urban areas.

DHS clusters + GRUMP

- Colored footprints are GRUMP urban extents
- Black dots are DHS clusters
 - Clusters average 30 households
 - Potential for grouping into urban areas, by size of area, has some promise
The methodology of small area estimation involves imputing into population census—which does not have consumption data—a measure of per capita consumption from household survey data. Relies on statistical relationships between common variables in census and survey data. Detailed description in Elbers et al. (2003), *Econometrica*.

SAE Methodology (2)

Three Stages:

- **zero stage:** establish comparability of data sources; identify common variables; understand sampling strategy.
- **First stage:** estimate model of consumption in the household survey based on common variables.
- **second stage:** take parameter estimates to census, predict consumption. Use this to estimate aggregate poverty and inequality indicators for small areas.
Kenya: Headcount Index, or the proportion of the population whose welfare falls below the poverty line. Mapped at fourth admin level.
Spatial Statistics

- Spatial characteristics of the dataset are important to take into account when building a model.
- Standard OLS regression assumptions include:
 - Normality
 - Independence
 - Homoskedasticity
- Independence among observations is generally violated when building statistical models for spatial data sets.

Spatial Autocorrelation (SA)

- The extent to which an occurrence of an event constrains or makes more likely an event in a neighboring unit.
- Like serial autocorrelation (in time series data), the events are not independent, and thus violates Gauss-Markov assumptions.
- Estimated coefficients are biased and inconsistent.
- Residuals/Standard Errors are artificially deflated leading to type I errors (improper rejection of null hypothesis).

* According to Lembo (undated): “If the observations… are spatially clustered in some way, the estimates obtained from the correlation coefficient or OLS estimator will be biased and overly precise. They are biased because the areas with higher concentration of events will have a greater impact on the model estimate and they will overestimate precision because, since events tend to be concentrated, there is actually a fewer number of independent observations than are being assumed.”
Example of test for spatial randomness

Moran's I is a weighted correlation coefficient used to detect departures from spatial randomness. Looks for spatial autocorrelation.

Research Examples
Data integration: Inputs

- Remotely sensed:
 - Vegetation
 - Lights
 - Built-up area

- Census data:
 - Population
 (Age Structure
 Other attributes)

- Survey data:
 Other attributes

- Spatial data:
 Administrative boundary files

Data integration: inputs

Spatial data:
- Administrative boundary files

Survey data:
- Other attributes

Census data:
- Population
 (Age Structure
 Other attributes)

Remotely sensed:
- Vegetation
- Lights
- Built-up area

past present future

Example of Data Integration Using Spatial Error Model Using Malnutrition Data

- Obtained percent of children underweight* from DHS and MICS surveys
- Match survey data to boundary data
- 377 sub-national units (SNU)

* Children are defined as underweight if their weight-for-age z-scores are below minus two standard deviations (-2 SD) from the median of the NCHS/CDC/WHO International Reference Population.
Moran’s I is similar to correlation coefficient, varying between –1.0 and +1.0. When autocorrelation is high, the coefficient is high. A positive I value indicates positive autocorrelation.
Spatial Error Model Results

<table>
<thead>
<tr>
<th>Dependent Variable: % of Children Underweight</th>
<th>Unstandardized Betas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>22.132 ***</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>-0.002 ***</td>
</tr>
<tr>
<td>Log of Average Runoff</td>
<td>0.348</td>
</tr>
<tr>
<td>Log of Average Elevation</td>
<td>1.05 *</td>
</tr>
<tr>
<td>Log of Average Malaria Transmission</td>
<td>0.246</td>
</tr>
<tr>
<td>Average No. of Drought Incidents (1980-2000)</td>
<td>0.684 ***</td>
</tr>
<tr>
<td>Proportion of SNU <2km from road</td>
<td>-13.436 ***</td>
</tr>
<tr>
<td>North Africa Dummy</td>
<td>-4.807 *</td>
</tr>
<tr>
<td>Ethiopia Dummy</td>
<td>10.943 *</td>
</tr>
<tr>
<td>High Agricultural Constraints Dummy</td>
<td></td>
</tr>
<tr>
<td>Lambda (autoregressive error term)</td>
<td>3.22 **</td>
</tr>
<tr>
<td></td>
<td>1.006 ***</td>
</tr>
</tbody>
</table>

* *p < .05, **p < .01, ***p < .001

Pseudo R² = .74
N = 374

Spatial Error Model Results

- **Latitude in Meters**: Mean: 121.13
 - 10000 = 10000
 - 10000 = 10000
 - 10000 = 10000
 - 10000 = 10000
 - 10000 = 10000

- **Malaria Transmission Index**: Mean: 12.17
 - 0.00000 = 0.00000
 - 0.00000 = 0.00000
 - 0.00000 = 0.00000
 - 0.00000 = 0.00000
 - 0.00000 = 0.00000

Figures

- **Average Elevation**
- **Average Malaria Transmission Index**
Correlates of Hunger: Conclusions

- **What does all this mean?**
 - Higher elevation areas tend to have higher levels of child malnutrition (even when controlling for the “Ethiopia effect”). This may reflect greater isolation, or constrained agricultural systems due to high slopes.
 - Overall water availability is less important than the perturbations to agricultural systems from frequent drought (deviations from the mean).
 - High road density means greater access to markets, but may also be a proxy for wealth and accessibility to health and other services.
 - SNUs that face the highest climate, soil and slope constraints to agriculture have significantly higher child malnutrition.

- **Limitations:** scale dependence, coarse spatial resolution, error in the measures, lack of other household variables as controls.

Poverty, Health & Land Cover in Accra, Ghana

- **Study used:**
 - Census data at tract level
 - Women’s health survey data
 - Remotely sensed data

Poverty & Health: Low Correlation

Table 4. Regression of Poverty on Health Indicators

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standardized Beta Coefficient</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty Score</td>
<td>.361</td>
<td>-2.42</td>
</tr>
</tbody>
</table>

Dependent variable is self-reported health score

R = .361
Adjusted R² = .108

No outliers; little evidence of heteroscedasticity; Moran’s I for residuals = .33; Z(I) = 1.69 at 2500m
Poverty & Vegetation Cover: Higher Correlation

Table 5. Vegetation as a Predictor of Poverty Levels by Locality

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standardized Beta Coefficient</th>
<th>t-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pct Vegetation</td>
<td>-.793</td>
<td>-7.92</td>
</tr>
</tbody>
</table>

Dependent variable is poverty score for locality

Adjusted R² = .62

No outliers; evidence of heteroscedasticity; Moran’s I for residuals=.43, Z(I)=2.26 at 1500m