Population change in Latin American and the Caribbean, 19902000, a spatial time series

*Marc Levy - CIESIN - Columbia University
Maria Muñiz - CIESIN - Columbia University
Susana Adamo - CIESIN - Columbia University
T. Mitchell Aide - University of Puerto Rico - Rio Piedras
María José Andrade Núñez - University of Puerto Rico - Rio Piedras
Gregory Yetman - CIESIN - Columbia University
Maria Elisa Lukang - CIESIN - Columbia University
Tricia Chai-Onn - CIESIN - Columbia University
Sandra Baptista - Earth Institute - Columbia University

Presentation to AAG annual meeting, 14 April 2010, Washington, DC

For correspondence: marc.levy@ciesin.columbia.edu

Acknowledgements

- National Science Foundation, Coupled Natural-Human Systems Program
 - Collaborative Research: The Impact of Economic Globalization on Human Demography, Land Use, and Natural Systems in Latin America and the Caribbean
 - PI Mitch Aide, University of Puerto Rico
 - David Carr UC Santa Barbara
 - Mateo Clark, Sonoma State University
 - Ricardo Grau, Universidad Nacional de Tucumán

Characterizing spatial distribution of population dynamically is important

- Driver of global change processes
 - Land use
 - Climate change
 - Hydrology
 - Emerging infectious diseases
- Element of vulnerability to
 - Global change
 - Natural disasters
 - Epidemics
 - Political conflict

Fundamental building block of sustainability science

But it is hard to do on a large scale

- Georeferencing of census data is not standardized across countries
 - Process is ad hoc
 - Each country does it differently
- Boundaries change over time
 - Complicates dynamic analysis of spatial data
- As a result, spatial studies of population dynamics tend to be small-scale, local and regional
- Gap: continental-scale spatial analysis of population dynamics

Our goals

- Characterize changing distribution of population in Latin America and Caribbean 1990-2000
 - Replicable methods
 - Spatial consistency
 - Comparable units
 - Spatial resolution suitable to global change analysis
- Integrate with comparable measures of land cover change (produced by collaborators) to explain interactions

A. Contiguously Split Administrative Units 1990 2000 C=? 1990 population In this example. a new municipio A = 100was formed in 2000 B = 100by splitting B into two separate units... 2000 population B and C. A= 125 B= 85 C=50 Problem: You don't have an official 1990 population estimate for municipio C.

Dealing with changes in administrative boundaries

Changes due to subdivision of census enumeration units, but also to administrative changes

C. Newly Formed Units 2000 In this example, 1990 population a new municipio A=100 D was formed in B = 1002000 by taking parts C = 75of A and B. 2000 population *A=125 C= 100 *B= 100 D=80 D=? Problem: You don't have an official 1990 population estimate for municipio D, A* or B*.

Source: María Muñíz, CIESIN, 2008

3 sections: Concepcion, San Javier, San Julian

5 sections: Concepcion, San Javier, San Julian, San Ramon, San Antonio de Lomerío

Ñuflo de Flores, Santa Cruz, Bolivia

6 sections: Concepcion, San Javier, San Julian, San Ramon, San Antonio de Lomerío, Cuatro Cañadas

- 45 Countries
- 16,080 administrative units
 - Primarily municipio

1990 Population Density persons/sq km Log10(1990 population density) -3.280350 - 0.424039 0.424040 - 1.195902 1.195903 - 1.823388 1.823389 - 2.708189 2.708190 - 4.677855 1,000 2,000 Km

Population Density, 1990

Matching reference years

- Start with data from multiple census years
- Calculate annual growth rates

$$r = \frac{LN[(P_2/P_1)]}{(t_2 - t_1)}$$

where, LN = the natural log, P_1 and P_2 = population counts for the first and second reference years, t_1 and t_2 = time periods 1 and 2.

 Extrapolate and interpolate to generate estimates for 1990 and 2000

The following formula is then applied to the official population estimates, to extrapolate the data: $e^{rt} \times P_1$

where, r= the geometric growth rate (as defined above), t= the number of years the initial estimate will be projected forward/backward, P1= population counts for the first reference year

Growth Rate No Data -0.184838 - -0.012624 -0.012623 - 0.007808 0.007809 - 0.026934 0.026935 - 0.065410 0.065411 - 0.260850 2,000 Km 1,000

Growth Rate, 1990-2000

Density

Growth Rate

Descriptives

```
1990 Density (people/sq km)
  Mean 228
  Min 0
  Max 47,627
  Std. Dev. 1450
1990-2000 Growth Rate (%)
 Mean 15.8
 Min -84.3
 Max 1,262
 Std. Dev. 36.1
```

Grouping the municipios

Density (persons/sq km)

Growth Rate (%)

Growth category * Density Category Crosstabulation

Count

		Density Category				
		Low	Middle	High	Very High	Total
Growth category	Low	575	2403	281	218	3477
	Middle	1199	5931	1520	1398	10048
	High	589	999	414	519	2521
Total		2363	9333	2215	2135	16046

Low Middle High

■ Very High

Low Density Growth Rate No Data Low Growth Rate Average Growth Rate High Growth Rate 1,000 2,000 Km

Municipios with low 1990 population density

Average Density Growth Rate No Data Low Growth Rate Average Growth Rate High Growth Rate 1,000 2,000 Km

Municipios with average 1990 population density

High Density Growth Rate No Data Low Growth Rate Average Growth Rate High Growth Rate 1,000 2,000 Km

Municipios with high 1990 population density

Very High Density **Growth Rate** No Data Low Growth Rate Average Growth Rate High Growth Rate 1,000 2,000 Km

Municipios
with very high
1990
population
density

Unweighted

Pop-weighted

Unweighted

Area-weighted

Pop weighted

Area weighted

Next steps

- Integrated model to explain land cover, demographic change
- Describe shifting patterns of vulnerability to climate change