

	WPCP	New TRC Limits	Average Eff TRC (2005-2006)	% Compliance
-		(mg/l)	(mg/l)	
200	26th Ward	0.45	0.80	0.00
	Coney Island	0.64	0.85	0.3
	Jamaica	0.53	0.70	0.82
	Rockaway	0.59	0.51	83

Chlorine Dioxide

Benefits

- Very Effective
 Bactericide and Viricide
- Shorter Contact Time Required than for Sodium Hypochlorite

Drawbacks

- No Large Scale
 Wastewater Treatment
 Applications Identified
- On-site Generation Required
- Potential Chlorite Toxicity
- Corrosive
- Potential Odor Concerns

Brominated Compounds

Benefits

- Effective Bactericide and Viricide
- Capital and Operating Costs Similar to Chlorine

Drawbacks

- Same Discharge/Toxicity Constraints as Chlorine
- Not Widely Used in the U.S.
- Requires an Additional Chemical (Sodium Bromide and Sodium Hypochlorite)
- Potential DBP Formation

Peracetic Acid

Be

S?

Benefits

- Similar to Chlorination in Terms of Application and Equipment
- No DBPs
- Long Shelf Life

Drawbacks

- Not Yet Approved by USEPA as a Wastewater Disinfectant
- No Full-Scale U.S. Application
- Significantly Higher Costs (\$7-8/gallon)

Ozone **Drawbacks Benefits** • Not Widely Used in U.S. Highly Effective for Wastewater Bactericide and Viricide Disinfection • Significantly Higher **Capital Cost** • Significantly Higher **Operational Costs** More Complicated to **Operate than Other Technologies** Most Effective on Filtered and/or Nitrified Wastewaters

Optimized Chlorination

Benefits

- Familiar Application, Requires Only Minor Modifications to Existing Disinfection Facilities
- Very Low Capital Cost

Drawbacks

- Chlorine Level May Be Difficult to Control with Low Ammonia Effluents
- Potential for DBP Formation with Low Ammonia Effluents
- Increase I&C requirements

Chlorination/Dechlorination

Benefits

- Similar to Chlorination in Terms of Equipment
- Relatively Minor Modifications to Existing Disinfection Facilities
- Lower Capital Cost

Drawbacks

- Chlorine Level May Be Difficult to Control with Low Ammonia Effluents
- Potential for DBP Formation with Low Ammonia Effluents
- Re-aeration May be Required
- Higher Operational Costs

Bench Scale Testing/Wastewater Characterization

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

		Disinfecti	on Influent	Required Log Reduction		Required (mJ/c	Required UV Dose (mJ/cm2)	
	WPCP	Fecal Coliform (cfu/100 ml)	Enteroc occus (cfu/100 ml)	Fecal Coliform	Enteroc occus	Fecal Coliform	Enteroc occus	
50	SECONDARY EFFLUENT - Based on Monthly Limits of			200 cfu/100 ml	35 MPN			
	26th Ward	6.03E+05	2.44E+05	3.5	3.8	20	25	
	Coney Island	2.40E+05	1.01E+05	3.1	3.5	18	40-50	
	North River	8.65E+05	3.36E+05	3.6	4.0	15	30	
	Port Richmond	1.08E+06	1.47E+05	3.7	3.6	30	30-40	
	PO-55	1.56E+05	1.07E+05	2.9	3.5	< 10	30	
	Tallman Island	7.75E+05	2.84E+05	3.6	3.9	20	45	

Bench Scale Testing/Wastewater Characterization

- Chlorination/Dechlorination Dose Response Tests
 - Coney Island (non-nitrifying)
 - ◆ 26th Ward (BNR)
 - Wards Island (BNR)
 - Port Richmond (Low Ammonia Effluent)
 - Rockaway (Low Ammonia Effluent)
 - PO-55 (Low nitrogen)

Chlorination/Dechlorination Basics -How Does It Work?

- Chlorination Kills
 - Attacks cell wall, enzymes, & DNA
- Sodium Bisulfite is then added at the end of the process to remove excess residual chlorine
 - No toxicity issues associated with Sodium Bisulfite
 - An excess could result in lower effluent DO concentrations.

			Contact	Flow		
	Based On	Based On	Time			
<u>nl Limit</u>	35 Entero/100 r	200 FC/100 ml	(Minutes)	(MGD)	WPCP	
<u>(mg/L</u>	<u>(mg/L)</u>	<u>(mg/l)</u>				En
0.45	0.8	0.8	46.3	60.3	26th Ward	125
0.64	2.8	1.4	23.5	90.8	Coney Island	
0.59	0.9	0.25	68.4	19.2	Rockaway	

Revised SPDES TRC Compliance Schedule for BNR WPCPs

Milestone

Submit Scope of Work Verify TRC Limits

Submit Alternatives Evaluation

Final Limit Verification

Submit Testing Plan

Begin Operating Demonstration Facilities

Submit Demonstration Report

Submit Facility Plans

Begin Construction

Current Date

- 10/1/03
- 8/1/04
- 10/1/05
- 4/1/06
- 10/1/06
- 4/01/09
- 10/01/10
- 4/1/11
- According to Schedule in Facility Plan

